提高双树复小波的齿轮箱复合故障特征提取  被引量:6

Compound Fault Feature Extraction of Gearbox with Improved Dual-tree Complex Wavelet Transform

在线阅读下载全文

作  者:叶美桃[1] 柴慧理[1] Ye Meitao;Chai Huili(Department of Vehicle Engineering,Shanxi Traffic Vocational and Technical College,Taiyuan 030031 China)

机构地区:[1]山西交通职业技术学院车辆工程系

出  处:《机械传动》2019年第9期123-127,143,共6页Journal of Mechanical Transmission

基  金:国家自然科学基金(59975064);山西省基础研究项目(2015011063)

摘  要:针对双树复小波变换分解层数需要先验确定和重构后各子带出现的频率混叠现象,提出了一种改进双树复小波变换的齿轮箱复合故障特征提取方法。首先,确定双树复小波变换的分解层数和有效的子带;对得到的各子带进行去频率混叠,确保消除频率混叠现象,使每个子带仅含有唯一的特征频率;然后,用所提方法和现有VMD(Variational Mode Decomposition)进行对比,验证了所提方法的可行性;最后将所提方法应用于齿轮箱复合故障振动信号中,成功提取出齿轮剥落和轴承外圈故障。所提方法为齿轮箱复合故障特征提取提供了一种新的思路。For Dual-tree complex wavelet transform decomposition of the number of layers need to be determined prior to and the sub-band after the occurrence of frequency aliasing,an improved dual tree complex wavelet transform is proposed to deal with gearbox composite fault feature extraction.Firstly,the decomposition layer number and the effective sub-band of the dual-tree complex wavelet transform are adaptively determined. The obtained sub-bands are subjected to frequency removal,the sub-band FFT is used to determine the main frequency and its notch filtering is performed to ensure that the frequency aliasing is eliminated,so that each sub-band only contains a unique characteristic frequency.Then using the proposed method and the methods such as Variational Mode Decomposition,the noise-containing simulation signals are decomposed and compared to verify the feasibility of the proposed method.The proposed method is applied to the vibration signal of the gearbox composite fault and successfully extracted the gear spalling and bearing outer ring fault.The proposed method provides a new idea for the extraction of complex fault features of gearboxes.

关 键 词:改进双树复小波变换 齿轮箱复合故障 去频率混叠 

分 类 号:TN911.7[电子电信—通信与信息系统] TH132.41[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象