Numerical Simulation and Optimization of Staged Combustion and NO_x Release Characteristics in Precalciner  被引量:5

Numerical Simulation and Optimization of Staged Combustion and NO_x Release Characteristics in Precalciner

在线阅读下载全文

作  者:WANG Weishu LIAO Yihan LIU Jun HUANG Zhihao TIAN Miao 

机构地区:[1]Thermal Engineering Research Centre, North China University of Water Resources and Electric Power

出  处:《Journal of Thermal Science》2019年第5期1024-1034,共11页热科学学报(英文版)

基  金:the support provided by the National Key R&D Plan (under No.2018YFB0604103)

摘  要:In order to study the combustion characteristics in a precalciner, the temperature and composition field in a typical Trinal-sprayed calciner were numerically analysed. The results obtained by simulation were compared to actual measurements and the simulated results were in good agreement with the measured ones. The results indicated that the aerodynamic flow field in the precalciner is satisfactory, and a symmetrical reflux occurs in the shrinkage zone of the precalciner because of air staging, which can increase the residence time of the solid particles. The temperature distribution in the furnace is uniform, and the average temperature is greater than 1200 K, which can satisfy the conditions for the pulverised coal combustion and raw material decomposition. The mass fraction distribution of oxygen, carbon monoxide, and carbon dioxide in the precalciner is closely related to the temperature distribution. The concentration of nitrogen oxides(NO_x) exhibits a trend of increasing, decreasing and then increasing, and finally tending to a stable level. Within a certain velocity range, the average temperature in the precalciner and the decomposition efficiency of the raw material increase as the flue gas velocity increases. When the flue gas velocity is 24 m/s, the overall performance of the precalciner is optimal.In order to study the combustion characteristics in a precalciner, the temperature and composition field in a typical Trinal-sprayed calciner were numerically analysed. The results obtained by simulation were compared to actual measurements and the simulated results were in good agreement with the measured ones. The results indicated that the aerodynamic flow field in the precalciner is satisfactory, and a symmetrical reflux occurs in the shrinkage zone of the precalciner because of air staging, which can increase the residence time of the solid particles. The temperature distribution in the furnace is uniform, and the average temperature is greater than 1200 K, which can satisfy the conditions for the pulverised coal combustion and raw material decomposition. The mass fraction distribution of oxygen, carbon monoxide, and carbon dioxide in the precalciner is closely related to the temperature distribution. The concentration of nitrogen oxides(NO_x) exhibits a trend of increasing, decreasing and then increasing, and finally tending to a stable level. Within a certain velocity range, the average temperature in the precalciner and the decomposition efficiency of the raw material increase as the flue gas velocity increases. When the flue gas velocity is 24 m/s, the overall performance of the precalciner is optimal.

关 键 词:TTF PRECALCINER staged COMBUSTION NOx EMISSION CHARACTERISTICS optimization 

分 类 号:O4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象