Number of fixed points for unitary T^n-1-manifold  

在线阅读下载全文

作  者:Shiyun WEN Jun MA 

机构地区:[1]School of Mathematical Sciences, Capital Normal University, Beijing 100048, China [2]College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China

出  处:《Frontiers of Mathematics in China》2019年第4期819-831,共13页中国高等学校学术文摘·数学(英文)

摘  要:Let M be a 2n-dimensional closed unitary manifold with a T^n-1- action with only isolated fixed points. In this paper, we first prove that the equivariant cobordism class of a unitary T^n-1-manifold M is just determined by the equivariant Chern numbers C^Tn-1/ω[M], where ω=(i1,i2,…,i6)are the multi-indexes for all i1,i2,…,i6∈N. Then we show that if M does not bound equivariantly, then the number of fixed points is greater than or equal to [n/6]+ 1, where [n/6] denotes the minimum integer no less than n/6.

关 键 词:UNITARY torus MANIFOLD EQUIVARIANT CHERN NUMBER COBORDISM localization theorem 

分 类 号:O[理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象