检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱玉玲 王建步 王安东[2] 王锦锦 赵晓龙 任广波 胡亚斌 陈晓英[1] 马毅 ZHU Yu-ling;WANG Jian-bu;WANG An-dong;WANG Jin-jin;ZHAO Xiao-long;REN Guang-bo;HU Ya-bin;CHEN Xiao-ying;MA Yi(First Institute of Oceanography,Ministry of Natural Resources,Qingdao 266061,China;Administration Bureau of the Yellow River Delta National Nature Reserve,Dongying 257091,China;Zhuhai Orbit Aerospace Science & Technology Co.,Ltd.,Zhuhai 519000,China;Dalian Maritime University,Dalian 116026,China)
机构地区:[1]自然资源部第一海洋研究所,山东青岛266061 [2]山东黄河三角洲国家级自然保护区管理局,山东东营257091 [3]珠海欧比特宇航科技股份有限公司,广东珠海519000 [4]大连海事大学,辽宁大连116026
出 处:《海洋科学》2019年第7期12-22,共11页Marine Sciences
基 金:国家自然科学基金项目(61601133,41706209);高分海岸带遥感监测与应用示范项目(41-Y30B12-9001-14/16)~~
摘 要:基于2018年10月份黄河口入海两侧的LANDSAT8 OLI影像,提取植被指数和缨帽变换分量共9维光谱特征,构建融合浅层特征的8层深度卷积神经网络(deep convolutional neural network,DCNN)分类模型,开展互花米草(Spartina alterniflora Loisel)遥感监测的方法研究,并从不同的浅层特征来具体分析互花米草的监测结果。结果表明:(1)在分类方法上,DCNN模型的总体分类精度最高,达到90.33%,与支持向量机(support vector machine,SVM)、随机森林(random forest,RF)分类器相比,精度分别提高4.78%、2.7%,互花米草的生产者精度分别提高了2.56%、0.47%,说明在滨海湿地遥感影像分类中,DCNN有着更好的应用潜力;(2)融合浅层特征后,DCNN的总体分类精度和互花米草的识别精度分别提高了0.34%和3.25%,有效提高了对互花米草的监测能力。其中,融合归一化植被水分指数(NDII)浅层特征的DCNN分类方法中,互花米草的识别精度提高最多,为2.56%,比值植被指数(RVI)次之,为2.32%。研究结果可为互花米草的监测与管理提供技术与数据支撑。Although the deep convolutional neural network(DCNN)model has been applied to remote sensing im-age classification,the focus is generally on urban areas,and studies on multispectral image classification in coastal wetlands are relatively scarce.Based on the LANDSAT8 OLI imagery on both sides of the Yellow River estuary in October 2018,in this study,a total of nine-dimensional spectral features of vegetation index and the tasseled cap transformation components were extracted,and an eight-layer DCNN classification model with shallow features was constructed to identify Spartina alterniflora.The results of S.alterniflora monitoring were analyzed from dif-ferent shallow features.The results indicated the following:(1)Compared with the support vector machine(SVM)and the random forest(RF)classifier,the DCNN model had the highest overall classification accuracy,reaching 90.33%;its accuracy was higher than those of the SVM and RF by 4.78%and 2.7%,respectively,and the produc-er’s accuracy of S.alterniflora was higher by 2.56%and 0.47%,respectively.This shows that the DCNN has better application potential in coastal wetlands classification.(2)After the fusion of shallow features,the DCNN overall classification accuracy and its recognition accuracy of S.alterniflora were higher than those of SVM and RF by 0.34%and 3.25%,respectively,and the model effectively improved the monitoring ability of S.alterniflora.In ad-dition,in the DCNN classification method that combines the shallow features of normalized vegetation water index(NDII),the recognition accuracy of S.alterniflora increased the most,which was 2.56%,followed by the ratio of vegetation index(RVI),which was 2.32%.
关 键 词:深度卷积神经网络(deep convolutional NEURAL network DCNN) 浅层特征融合 湿地分类 互花米草(Spartina alterniflora Loisel) 黄河口
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15