高速无刷直流电机自寻优换相校正策略  被引量:13

Self-Optimization Commutation Correction Strategy for High-Speed Brushless DC Motor

在线阅读下载全文

作  者:施晓青 王晓琳[1] 徐同兴 顾聪[1] Shi Xiaoqing;Wang Xiaolin;Xu Tongxing;Gu Cong(School of Automation Nanjing University of Aeronautics and Astronautics ,Nanjing 211106 China)

机构地区:[1]南京航空航天大学自动化学院

出  处:《电工技术学报》2019年第19期3997-4005,共9页Transactions of China Electrotechnical Society

摘  要:换相误差是影响高速永磁无刷直流电机系统性能的主要因素之一,众多学者已对换相误差模型及校正技术进行了广泛研究。该文指出相电流与换相误差呈非线性关系,当且仅当换相误差被完全补偿时相电流存在最小值。为达到换相误差的最优补偿效果,提出一种基于最小相电流追踪的自寻优换相校正策略,即仅以电机相电流作为反馈信号对换相补偿角自动寻优。这种自寻优换相校正策略既不依赖于任何电机参数,又能统一补偿因电机阻抗效应、采样延迟及控制回路延迟等不同因素导致的换相误差。同时,该策略不受限于无刷直流电机的位置检测方法、调制方式或反电动势波形是否理想等条件,实现简单,具有较强的适用性。最后通过仿真和实验验证了该策略的有效性和优越性。The commutation error is one of the main factors that degrades the performances of high-speed permanent magnet brushless DC motor(BLDCM), thus the commutation error models and correction strategies have attracted a great deal of attention. This paper presents that as the commutation error changes, the phase current is continuous derivable and has a minimum only when the commutation error is fully compensated. In order to achieve the optimal commutation correction effect, this paper proposes a self-optimization commutation correction strategy based on tracking the minimum phase current. Such strategy is not only independent from the motor parameters but also can uniformly compensate for the commutation errors caused by various factors such as impedance of the motor, sampling delay, control-loop delay and so on. In addition, this strategy is simple and has general applicability in that it is not restricted by the influence of rotor position detection methods, modulation modes or whether the back electromotive force waveform is ideal, etc. The effectiveness and superiority of the strategy are verified by simulations and experiments.

关 键 词:换相误差 自寻优 无刷直流电机 换相校正 

分 类 号:TM351[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象