An investigation of ballistic response of reinforced and sandwich concrete panels using computational techniques  被引量:1

在线阅读下载全文

作  者:Mohammad HANIFEHZADEH Bora GENCTURK 

机构地区:[1]Sonny Astani Department of Civil and Environmental Engineering,University of Southern California,Los Angeles,CA 90007,USA

出  处:《Frontiers of Structural and Civil Engineering》2019年第5期1120-1137,共18页结构与土木工程前沿(英文版)

摘  要:Structural performance of nuclear containment structures and power plant facilities is of critical importance for public safety. The performance of concrete in a high-speed hard projectile impact is a complex problem due to a combination of multiple failure modes including brittle tensile fracture, crushing, and spalling. In this study, reinforced concrete (RC) and steel-concrete-steel sandwich (SCSS) panels are investigated under high-speed hard projectile impact. Two modeling techniques, smoothed particle hydrodynamics (SPH) and conventional finite element (FE) analysis with element erosion are used. Penetration depth and global deformation are compared between doubly RC and SCSS panels in order to identity the advantages of the presence of steel plates over the reinforcement layers. A parametric analysis of the front and rear plate thicknesses of the SCSS configuration showed that the SCSS panel with a thick front plate has the best performance in controlling the hard projectile. While a thick rear plate is effective in the case of a large and soft projectile as the plate reduces the rear deformation. The effects of the impact angle and impact velocity are also considered. It was observed that the impact angle for the flat nose missile is critical and the front steel plate is effective in minimizing penetration depth.

关 键 词:concrete PANELS PROJECTILE impact FINITE element modeling smoothed particle HYDRODYNAMICS strain rate effect 

分 类 号:X[环境科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象