检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yi LIU
机构地区:[1]School of Mathematical Sciences, Ocean University of China
出 处:《Acta Mathematicae Applicatae Sinica》2019年第4期845-861,共17页应用数学学报(英文版)
基 金:Supported by the National Natural Science Foundation of China(No.11801567)
摘 要:In this paper, we study the sure independence screening of ultrahigh-dimensional censored data with varying coefficient single-index model. This general model framework covers a large number of commonly used survival models. The property that the proposed method is not derived for a specific model is appealing in ultrahigh dimensional regressions, as it is difficult to specify a correct model for ultrahigh dimensional predictors.Once the assuming data generating process does not meet the actual one, the screening method based on the model will be problematic. We establish the sure screening property and consistency in ranking property of the proposed method. Simulations are conducted to study the finite sample performances, and the results demonstrate that the proposed method is competitive compared with the existing methods. We also illustrate the results via the analysis of data from The National Alzheimers Coordinating Center(NACC).In this paper, we study the sure independence screening of ultrahigh-dimensional censored data with varying coefficient single-index model. This general model framework covers a large number of commonly used survival models. The property that the proposed method is not derived for a specific model is appealing in ultrahigh dimensional regressions, as it is difficult to specify a correct model for ultrahigh dimensional predictors.Once the assuming data generating process does not meet the actual one, the screening method based on the model will be problematic. We establish the sure screening property and consistency in ranking property of the proposed method. Simulations are conducted to study the finite sample performances, and the results demonstrate that the proposed method is competitive compared with the existing methods. We also illustrate the results via the analysis of data from The National Alzheimers Coordinating Center(NACC).
关 键 词:censored data consistency in ranking PROPERTY FEATURE selection HIGH-DIMENSIONAL data sure SCREENING PROPERTY VARYING COEFFICIENT single-index model
分 类 号:R195.1[医药卫生—卫生统计学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43