Linear Arboricity of NIC-Planar Graphs  被引量:1

Linear Arboricity of NIC-Planar Graphs

在线阅读下载全文

作  者:Bei NIU Xin ZHANG 

机构地区:[1]School of Mathematics and Statistics, Xidian University

出  处:《Acta Mathematicae Applicatae Sinica》2019年第4期924-934,共11页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(Nos.11871055,11301410);the Natural Science Basic Research Plan in Shaanxi Province of China(No.2017JM1010);the Fundamental Research Funds for the Central Universities(Nos.JB170706)

摘  要:A graph is NIC-planar if it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing edges share at most one common end vertex. It is proved that every NIC-planar graph with minimum degree at least 2(resp. 3) contains either an edge with degree sum at most 23(resp. 17) or a 2-alternating cycle(resp. 3-alternating quadrilateral). By applying those structural theorems, we confirm the Linear Arboricity Conjecture for NIC-planar graphs with maximum degree at least 14 and determine the linear arboricity of NIC-planar graphs with maximum degree at least 21.A graph is NIC-planar if it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing edges share at most one common end vertex. It is proved that every NIC-planar graph with minimum degree at least 2(resp. 3) contains either an edge with degree sum at most 23(resp. 17) or a 2-alternating cycle(resp. 3-alternating quadrilateral). By applying those structural theorems, we confirm the Linear Arboricity Conjecture for NIC-planar graphs with maximum degree at least 14 and determine the linear arboricity of NIC-planar graphs with maximum degree at least 21.

关 键 词:NIC-planar GRAPH LINEAR ARBORICITY LIGHT EDGE 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象