面向电力无线专网的分层异构网络接入协同选择方案  被引量:12

An access synergetic selection approach in hierarchical heterogeneous network oriented to power wireless communication

在线阅读下载全文

作  者:唐元春 林文钦 陈力 朱佳佳[2] TANG Yuanchun;LIN Wenqin;CHEN Li;ZHU Jiajia(Economic Technology Research Institute,State Grid Fujian Electric Power Company,Fuzhou 350012,China;North China Electric Power University,Beijing 102206,China)

机构地区:[1]国网福建省电力有限公司经济技术研究院,福建福州350012 [2]华北电力大学,北京102206

出  处:《电力系统保护与控制》2019年第19期171-178,共8页Power System Protection and Control

基  金:国网福建省电力有限公司经济技术研究院项目资助(JYYFW2018JT06006);国家自然科学基金(51507063)~~

摘  要:针对电力无线专网应用场景部分地区存在盲、弱覆盖等问题,提出了一种分层异构网络接入协同选择方案。该方案研究了均衡网络静态性能指标和动态性能指标的多目标联合优化,并利用改进非支配排序遗传算法求解该方案的最优解。仿真结果表明,提出的方案在承载实时和非实时业务时,都能够保证静态性能指标和动态性能指标之间的均衡性,因而能够完整地表征网络的整体性能。进而用户终端能够合理地选择整体性能较好的网络进行接入,使得分层异构网络资源能够得到合理的分配。The deployment of power wireless private network could trigger the severe problems of blind and weak coverage in some areas, thus this paper focuses on an access synergetic selection approach in hierarchical heterogeneous network oriented to power wireless communication. This scheme studies the joint optimization of static performance index and dynamic performance index of network. Then it’s converted into a multi-objective optimization problem. It solves the problem by using the nondominated sorting genetic algorithm version II and gains a set of Pareto optimal solutions. Simulation results show that the proposed scheme can guarantee the balance between static performance index and dynamic performance index, and thus can fully characterize the overall performance of the network. Therefore, user terminal could choose the network with better overall performance to access, which makes the hierarchical heterogeneous network resources be allocated reasonably.

关 键 词:电力无线专网 分层异构网络 接入协同选择 多目标优化 改进非支配排序遗传算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TM724[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象