基于加权场景先验的海上红外弱小目标检测  被引量:7

Infrared small target detection based onweighted scene prior

在线阅读下载全文

作  者:潘胜达[1] 张素 赵明[1] 安博文[1] PAN Sheng-Da;ZHANG Su;ZHAO Ming;AN Bo-Wen(College of Information Engineering,Shanghai Maritime University,Shanghai 201306,China)

机构地区:[1]上海海事大学信息工程学院

出  处:《红外与毫米波学报》2019年第5期633-641,共9页Journal of Infrared and Millimeter Waves

基  金:国家自然科学基金(61302132,61504078,41701523)~~

摘  要:为了提高海上红外弱小目标检测的检测精度和实时性,提出了一种基于加权场景先验的红外弱小目标检测方法.该方法首先利用目标的稀疏特性以及海面场景的非局部自相关特性,将目标和背景的分离问题转化为恢复低秩和稀疏矩阵的鲁棒主成分分析(Robust Principal Component Analysis,RPCA)问题.之后,将海面背景的先验特征信息通过加权核范数的方式加入模型,加快算法中目标和背景图像块矩阵的分解速度.最后,通过引入交替方向乘子法(ADMM)算法进一步加速求解的迭代速度.实验结果表明:该算法能有效地提高目标检测准确率,算法实时性较原算法提高了120%.To further to improve the detection accuracy and real-time performance of infrared small target detection at sea, a new method based on weighted scene priors is introduced. Firstly, using the sparse characteristics of the target and the non-local self-correlation characteristics of the sea background, the target-background separation problem is modeled as a robust low-rank matrix recovery problem. Moreover, the prior information on sea background is added into the model by weighted nuclear norm to accelerate the decomposition of target and background images’ matrix in the algorithm. Finally, the alternating direction method of multipliers (A DMM) is introduced to further to accelerate the iteration speed of the solution. The experimental results show that the proposed algorithm can effectively improve the accuracy of target detection. The real-time performance of the algorithm is improved by 120% compared with the original algorithm.

关 键 词:图像处理 弱小目标检测 加权场景先验 加权核范数 交替方向乘子法 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象