基于模糊商空间的属性权重确定算法研究与实现  

Research and Implementation of Attribute Weight Determination Algorithm Based on Fuzzy Quotient Space

在线阅读下载全文

作  者:陈丽芳 代琪 付其峰 CHEN Li-fang;DAI Qi;FU Qi-feng(College of Science,North China University of Science and Technology,Tangshan Hebei 063210,China;College of Information Engineering,North China University of Science and Technology,Tangshan Hebei 063210,China)

机构地区:[1]华北理工大学理学院,河北唐山063210 [2]华北理工大学信息工程学院,河北唐山063210

出  处:《华北理工大学学报(自然科学版)》2019年第4期109-116,共8页Journal of North China University of Science and Technology:Natural Science Edition

基  金:河北省自然科学基金项目(F2014209086)

摘  要:科学确定多属性的权重是决策领域的核心问题。常规算法多采用手工计算,过程繁琐且不能覆盖全部数据集,难以应用到实际决策领域。针对大数据集的决策问题,研究一种基于模糊商空间和粗糙集理论的权重确定算法,并用Python语言实现算法的仿真计算,快速获得大数据集中多个属性重要度排序并确定各属性的权重。结果表明,该算法的设计与实现为属性权重确定提供了一种新的研究方法和计算平台,方便广大工程领域数据分析人员快速确定属性权重,提高数据分析效率,具有一定的推广价值和实用价值。The scientific determination of multiple attribute weight is the core issue in the decision-making field.Conventional algorithms mostly use manual calculation,which are cumbersome and cannot cover all data sets,so they are difficult to apply to the actual decision-making field.Aiming at the decision-making problem of large data sets,a weight determination algorithm based on fuzzy quotient space and rough set theory was studied,and the algorithm was simulated with Python language.The order of importance of multiple attributes in the big data set was quickly obtained,and the weight of each attribute was determined.The results show that the design and implementation of the algorithm provide a new research method and computing platform for attribute weight determination,which is convenient for data analysis in engineering field to determine attribute weight quickly and improve the efficiency of data analysis.Therefore,it has certain promotional value and practical value.

关 键 词:权重确定算法 模糊商空间 粗糙集 属性权重:仿真 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象