基于IABC-Elman神经网络的电厂耗煤量短期预测  被引量:3

Short-term Prediction of Coal Consumption of Power Plants Based on IABC-Elman Neural Network

在线阅读下载全文

作  者:石宪 钱玉良 温鑫 周硕 SHI Xian;QIAN Yuliang;WEN Xin;ZHOU Shuo(School of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)

机构地区:[1]上海电力学院自动化工程学院

出  处:《上海电力学院学报》2019年第5期419-426,共8页Journal of Shanghai University of Electric Power

摘  要:针对电厂耗煤量具有不确定性的特点及传统Elman神经网络利用梯度下降训练网络参数易陷于局部最优的缺点,基于人工蜂群(ABC)算法,提出了一种改进蜜源更新方式和跟随蜂选择引领蜂方式的改进ABC优化算法,结合进煤量、存煤量和发电量,建立了Elman神经网络电厂耗煤量短期预测模型(IABC-Elman)。实际算例表明,基于IABC-Elman电厂耗煤量短期预测模型结果能达到耗煤量短期预测的标准,与传统神经网络相比具有更高的预测精度。Due to the uncertainty of coal consumption in power plants and the shortcomings of traditional Elman neural network using gradient descent training network parameters to be trapped in local optimum,an improved artificial bee colony (ABC) is proposed to update the honey source and follow the bee.The optimization algorithm of artificial bee colony that leads the new method of bee is selected,and the short-term prediction model of coal consumption of Elman neural network power plant (IABC-Elman) is established by combining coal intake,coal storage and power generation.The actual example shows that the short-term prediction model of power plant based on IABC Elman neural network can achieve the short-term prediction of coal consumption,and has higher prediction accuracy than traditional neural network.

关 键 词:电网经济调度 耗煤量预测 ELMAN神经网络 人工蜂群算法 

分 类 号:TM621.2[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象