检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于宁 宋海玉 孙东洋 王鹏杰 姚金鑫 YU Ning;SONG Hai-yu;SUN Dong-yang;WANG Peng-jie;YAO Jin-xin(College of Computer Science and Engineering,Dalian Nationalities University,Dalian Liaoning 116600,China;Anxundasheng Medical Technology Company,Beijing 100020,China)
机构地区:[1]大连民族大学计算机科学与工程学院,辽宁大连116600 [2]安迅达盛医疗科技有限公司,北京100020
出 处:《图学学报》2019年第5期872-877,共6页Journal of Graphics
基 金:国家自然科学基金项目(61300089);辽宁省自然科学基金项目(201602199,2019-ZD-0182);辽宁省高等学校创新人才支持计划项目(LR2016071)
摘 要:针对基于深度特征的图像标注模型训练复杂、时空开销大的不足,提出一种由深度学习中间层特征表示图像视觉特征、由正例样本均值向量表示语义概念的图像标注方法。首先,通过预训练深度学习模型的中间层直接输出卷积结果作为低层视觉特征,并采用稀疏编码方式表示图像;然后,采用正例均值向量法为每个文本词汇构造视觉特征向量,从而构造出文本词汇的视觉特征向量库;最后,计算测试图像与所有文本词汇的视觉特征向量相似度,并取相似度最大的若干词汇作为标注词。多个数据集上的实验证明了所提出方法的有效性,就F1值而言,该方法在IAPR TC-12数据集上的标注性能比采用端到端深度特征的2PKNN和JEC分别提高32%和60%。Image annotation based on deep features always requires complex model training and huge space-time cost. To overcome these shortcomings, an efficient and effective approach was proposed, whose visual feature was described by middle-level features of deep learning and semantic concept was represented by mean vector of positive samples. Firstly, the convolution result is directly outputted as the low-level visual feature by the middle layer of the pre-training deep learning model, and the sparse coding method was used to represent image. Then, visual feature vector was constructed for each textual word by the mean vector method of positive samples, and the visual feature vector database of the text vocabulary was constructed. Finally, the similarities of visual feature vectors between test image and all textual words were computed, and some words with largest similarities were selected as annotation words. The experimental results on several datasets demonstrate the effectiveness of the proposed method. In terms of F1-measure, the experimental results on IAPR TC-12 dataset show that the performance of the proposed method was improved by 32% and 60% respectively, compared to 2 PKNN and JEC with end-to-end deep features.
关 键 词:深度学习 图像标注 卷积 正例均值向量 特征向量
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200