检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵辉[1,2] 芮修业 岳有军[1] 王红君[1] Zhao Hui
机构地区:[1]天津理工大学/天津市复杂系统控制理论与应用重点实验室,天津300384 [2]天津农学院,天津300384
出 处:《江苏农业科学》2019年第18期136-140,共5页Jiangsu Agricultural Sciences
基 金:天津市科技计划(编号:15ZXZNGX00290);天津市农业科技成果转化与推广项目(编号:201203060、201303080)
摘 要:旨在研究复杂背景下叶片病斑的分割。由于复杂背景会带来巨大的噪声,产生过多的边缘和灰度值不均匀的区域,很容易导致过分割的现象,因此在复杂背景下,很难通过1次分割就完成对叶片病斑的分割。为了解决复杂背景下过分割的现象,提出两步分割的策略。第1步先用笔者提出的各向异性扩散测地线活动轮廓模型(anisotropic diffusion geodesic active contour model,简称AD-GAC模型)进行预分割,在此过程中构造新的边缘检测函数(edge stop function,简称ESF);第2步通过最大熵阈值法完成最终的分割。随后,提取并计算预分割部分各像素灰度值的最大熵,以得到病斑部分与叶片部分的灰度值阈值,通过阈值来完成最后1步的分割。通过MATLAB仿真,可以证明该算法可以有效地将病斑从复杂背景下的叶片上分割出来。研究结果后续的病斑识别作了铺垫。
关 键 词:各向异性扩散 测地线活动轮廓 复杂背景 最大熵阈值法 病斑分割
分 类 号:S126[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90