多项式形式Mie-Grüneisen物态方程及其等熵线  被引量:5

POLYNOMIAL FORM OF MIE-GRNEISEN EQUATION OF STATE AND ITS ISENTROPES

在线阅读下载全文

作  者:王继海[1] 

机构地区:[1]北京应用物理与计算数学研究所,北京100088

出  处:《爆炸与冲击》1992年第1期1-10,共10页Explosion and Shock Waves

摘  要:在压缩度不十分大,冲击波速度和波后粒子速度呈线性关系的条件下,将Hugoniot关系对压缩度展开,并进行适当的修正,获得了在炸药爆轰作用和高速碰撞的数值模拟和理论分析中常用的多项式形式Mie-Grüneisen物态方程系数和Hugoniot参数之间的关系,从而给出了一种近似的物态方程。此外,利用热力学关系,还获得了等熵声速和等熵方程的解析表达式。利用本文的公式,对10种最常用的轻、重金属进行了计算,并和文献中发表的数据进行了比较,结果表明,这里所提供的物态方程在100GPa以下有很好的精度。由解析形式的等熵方程,还可导出一些非常有意义的结论,这些结论对于分析爆炸作用和高速碰撞现象是很有用处的。Under the conditions of that the compression is not large and there exists a linear dependence of shock velocity on particle velocity. we expanded the Hugoniot relations in polynomial in terms of compression, and thus attained the coefficients and the relations of. these coefficients of the corresponding Mie-Gruneisen equation-of -state in polynomial form with limited terms and a proper correction. Again,the expressions of isentropic sound speed and isentrope were derived from above equation-of -state and thermodynamic relations. All of above expressions are convenient to the numerical simulation and theoretical analysis for the problems of ex- plosive detonation acting and high velocity impact phenomena.comparisons of numerical results calculated by these formulae with that published in literature for ten commonly useful light and heavy metals,it showed that the recommended equation-of-state is valid in the pressure region less than 100Gpa with good accuracy.

关 键 词:冲击压缩 等熵线 M-G物态方程 

分 类 号:O414.12[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象