检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭明 陈伟锋[1] Guo Ming;Chen Weifeng(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310013,China)
机构地区:[1]浙江工业大学信息工程学院
出 处:《计算机测量与控制》2019年第8期49-53,58,共6页Computer Measurement &Control
基 金:国家自然科学基金项目(51404211)
摘 要:软传感器在工业中被广泛应用于预测与产品质量密切相关的关键过程变量,这些变量很难在线测量;要建立一个高精度的软传感器,选择合适的辅助变量是至关重要的;针对这个问题,通过耦合训练集的BIC准则以及验证集的MSE准则得到一个混合整数非线性规划问题,并将该MINLP问题分成内外两层结构,外层采用遗传算法对二元整数变量进行寻优,内层在整数变量固定之后退化成了较易于求解的非线性规划问题;在此基础上经过进一步分析提出了基于混合准则的变量选择方法,然后将所得辅助变量子集代入BP神经网络进行软测量建模;最后,通过4组案例对所提出方法进行验证;结果表明,所提出方法建立的软测量模型具有较好的预测性能。Soft sensors are widely used in industry to predict key process variables that are closely related to product quality,and these variables are difficult to measure online.To build a high-precision soft sensor,it is important to choose the appropriate auxiliary variables.Aiming at this problem,this paper obtains a mixed integer nonlinear programming problem by coupling the BIC criterion of the training set and the MSE criterion of the verification set,and divides the mixed integer nonlinear programming problem into two layers,the inner and outer layers,and the outer layer uses the Genetic Algorithm(GA).The integer variable is optimized,and the inner layer degenerates into an easier to solve nonlinear programming problem(NLP)after the integer variable is fixed.Based on this analysis,a variable selection method based on hybrid criteria is proposed.Then the subset of secondary variables obtained is substituted into BP neural network for soft sensor modeling.Finally,the proposed method is validated by four actual cases.The results show that the soft-measurement model established by the proposed method has better prediction performance.
关 键 词:关键过程变量 辅助变量选择 混合整数非线性规划 BIC准则
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229