基于大气电场特征的雷电临近预警方法  被引量:12

Method of Lightning Nowcasting Warning Based on Atmospheric Electric Field Characteristics

在线阅读下载全文

作  者:琚泽立 吕新良 蒲路 吴大伟[3] 陶汉涛 姜志博[3] JU Zeli;LV Xinliang;PU Lu;WU Dawei;TAO Hantao;JIANG Zhibo(State Grid Shanxi Electric Power Research Institute,Xi'an 710054,China;State Grid Shanxi Electric Power Company,Xi'an 710048,China;Wuhan NARI Co.,Ltd.,State Grid Electric Power Research Institute,Wuhan 430074,China)

机构地区:[1]国网陕西省电力公司电力科学研究院,西安710054 [2]国网陕西省电力公司,西安710048 [3]国网电力科学研究院,武汉南瑞有限责任公司,武汉430074

出  处:《电瓷避雷器》2019年第4期111-117,共7页Insulators and Surge Arresters

摘  要:针对现有雷电预警技术适用性不强的现状,提出了一种基于大气电场特征的雷电临近预警方法.首先对比了典型雷暴天气与非雷暴天气大气电场的幅值特征;然后采用希尔伯特-黄变换(HHT)提取了二者固有的本征模态分量;最后运用雷电定位系统记录的一次雷暴过程进行预警反演分析.结果表明:结合大气电场幅值及其本征模态分量特征的雷电临近预警方法在不同地区具有很好的运行效果,且命中率约为0.78、TS评分达到0.615.该雷电临近预警方法使得在雷暴来临前采取主动性规避措施成为了可能,进一步地提高了雷害防护水平.Considering the current situation that applicability of the existing lightning warning technology is not strong,a method of lightning nowcasting warning based on atmospheric electric field characteristics is proposed.Firstly,amplitude characteristics of the atmospheric electric field in typical thunderstorm weather and non-thunderstorm weather are compared.Then,Hilbert-Huang Transform(HHT)is adopted to extract the intrinsic mode components.Finally,a thunderstorm recorded by the lightning location system is used for warning back analysis.The results show that this lightning nowcasting warning method,which is based on the characteristics of atmospheric electric field amplitude and its intrinsic mode components,has very good operation effect.And its hit ratio and TS score are about 0.78 and 0.615,respectively.This method has made it possible to take proactive circumvention measures before the thunderstorm,which further increases the level of lightning protection.

关 键 词:雷电临近预警 大气电场 希尔伯特-黄变换 本征模态分量 主动性防御 

分 类 号:TM8[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象