MQAM信号调制方式自动识别方法  被引量:17

Automatic modulation recognition algorithm for MQAM signal

在线阅读下载全文

作  者:张华娣[1] 楼华勋[1,2] ZHANG Huadi;LOU Huaxun(No.36 Research Institute of CETC,Jiaxing 314033,China;Science and Technology on Communication Information Security Control Laboratory,Jiaxing 314033,China)

机构地区:[1]中国电子科技集团公司第三十六研究所,浙江嘉兴314033 [2]通信信息控制和安全技术重点实验室,浙江嘉兴314033

出  处:《通信学报》2019年第8期200-211,共12页Journal on Communications

摘  要:提出了一种实现MQAM信号调制方式自动识别的方法。首先通过四阶累积量构造特征参数F,实现方形QAM和十字形QAM的识别,通过计算零中心归一化瞬时幅度紧致性,把16QAM从方形QAM中识别出来。然后,通过信号包络平方的频谱估算出波特率,结合定时同步,消除ISI码间干扰,恢复出较理想的星座图。接着,针对32QAM和128QAM设置不同的聚类半径,用减法聚类算法求出聚类点及其密度值,通过计算不同半径下的聚类点密度值的差异进行类型判断,同理,进行64QAM和256QAM信号的分类。所提方法不需要载频和波特率等先验信息,能完成16QAM、32QAM、64QAM、128QAM、256QAM信号的自动识别,并且没有复杂的迭代过程,可以应用于实际信号的调制识别。An automatic modulation recognition algorithm for MQAM signal was proposed.Firstly,the feature parameter F based on the fourth order cumulants was constructed to classify the square QAM and the cross QAM.Secondly,the compactness of zero center normalized instantaneous amplitude was calculated to identify the 16QAM from the square QAM.Thirdly,the baud rate was estimated by frequency spectrum of amplitude square,and timing was synchronized to delete the ISI and resume the relatively ideal constellations.And aiming at the 32QAM and the 128QAM,two different clustering radii were set,and clustering point density was got respectively by the subtractive clustering algorithm,and then the 32QAM and the 128QAM was classified depending on the difference of density value.In the same way,the 64QAM and the 256QAM were classified.The proposed algorithm can recognize five kinds of QAM signals,including 16QAM signals,32QAM signals,64QAM signals,128QAM signal and 256QAM signal without prior knowledge of frequency and baud rate.Furthermore,the proposed algorithm does not need complex iterative process,which can be applied in practical signal recognition.

关 键 词:四阶累积量 零中心归一化瞬时幅度紧致性 减法聚类 MQAM 自动识别 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象