检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:辛辰 刘鸿斌 XIN Chen;LIU Hongbin(Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University,Nanjing,Jiangsu Province,210037;State Key Lab of Pulp and Paper Engineering,South China University of Technology,Guangzhou,Guangdong Province,510640)
机构地区:[1]南京林业大学林业资源高效加工利用协同创新中心,江苏南京210037 [2]华南理工大学制浆造纸工程国家重点实验室,广东广州510640
出 处:《中国造纸》2019年第8期57-62,共6页China Pulp & Paper
基 金:制浆造纸工程国家重点实验室开放基金资助项目(201813)
摘 要:出水化学需氧量(COD)与出水固形物含量(SS)是评价造纸废水处理工艺好坏的重要指标。为了更好地对其进行预测,提出了一种基于随机森林(RF)模型的方法,并以R语言为工具进行回归预测。对比偏最小二乘(PLS)模型、支持向量回归(SVR)模型、人工神经网络(ANN)模型等常规预测模型,发现RF模型具有预测精度高,结果误差小,泛化能力好,调整参数少等优点。在对出水COD进行预测时,RF模型的相关系数r为0.7954,相比于PLS、SVR、ANN分别提高了8.88%、10.73%、14.68%。在对出水SS进行预测时,RF模型的相关系数r为0.8551,相比于PLS、SVR、ANN分别提高了15.43%、24.25%、30.79%。Effluent chemical oxygen demand(COD)and effluent suspended solid(SS)are important quality indicators of papermaking wastewater treatment process.To improve the prediction performance of these two indicators,a random forest(RF)model was proposed and implemented regressing forecasting using R.Compared with the conventional models including partial least squares(PLS),support vector regression(SVR),and artificial neural network(ANN),the RF model had the advantages of high prediction accuracy,small error,better generalization perforamce,and fewer parameters adjustment.In terms of the effluent COD prediction,the correlation coefficient r value of RF was 0.7954,which increased by 8.88%,10.73%,and 14.68%compared with PLS,SVR,and ANN,respectively.In terms of the ef?fluent SS prediction,the r value of RF was 0.8551,which increased by 15.43%,24.25%and 30.79%compared with PLS,SVR,and ANN,respectively.
分 类 号:X793[环境科学与工程—环境工程] TP27[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28