基于深度学习的电成像测井裂缝自动识别方法初探  被引量:4

在线阅读下载全文

作  者:杜小强[1] 刘鑫 薛志波[1] 张伟[1] 张建勇[1] 

机构地区:[1]中海油田服务股份有限公司

出  处:《化工管理》2019年第24期204-205,共2页Chemical Engineering Management

摘  要:电成像测井技术将井剖面地质情况直观、细致地呈现出来,是我们深入了解地下情况的最有效测井资料之一.近年来,深度学习在图像分类等方面大放异彩,将其引入到电成像测井裂缝自动识别中来,意义非凡.文章先通过数值模拟生成电成像测井裂缝的图像,之后在DIGITS可视化深度学习框架下,利用AlexNet网络进行裂缝自动识别模型的训练,定性地对电成像测井裂缝的图像进行分类.通过对识别结果的分析,得出该模型对斜交裂缝和高角度缝的识别效果很好,对水平缝和低角度缝的识别效果较好,对实际的电成像测井裂缝也具有一定的识别能力.

关 键 词:电成像测井 深度学习 数值模拟 裂缝自动识别 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象