检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹现刚[1] 姜韦光 张鑫媛 CAO Xian-gang;JIANG Wei-guang;ZHANG Xin-yuan(School of Mechanical Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)
机构地区:[1]西安科技大学机械工程学院
出 处:《计算机工程与设计》2019年第9期2677-2683,共7页Computer Engineering and Design
基 金:国家自然科学基金项目(51875451)
摘 要:为解决传统点检路径优化无法兼顾工作分配、地理跨度和路径最优等因素的问题,建立多目标协同优化的点检路径优化模型,并提出一种改进的粒子群遗传算法(PSO-GA)。采用基于k-d树的k-means算法确定初始粒子群;以PSO作为选择算子嵌入到GA中,重构PSO中的位置速度更新公式;针对点检路径问题与MTSP的主要区别,设计一套基于组的顺序交叉算子;引入2-opt算法作为局部搜索算子,优化迭代结果。实验结果表明,改进的PSO-GA求解高效,最优解质量优良,能够应用于设备点检路径优化。To solve the problem that the traditional spot inspection route optimization fails to strike a balance among work assignment,geographic span and route optimization,a multi-objective spot inspection route optimization model was built.And an improved PSO-GA was put forward.The initial particle swarm was determined using k-means based on k-d tree.The PSO was embedded into the GA as a selection operator,and the position speed update formula was refactored.Aiming at the main difference between the spot inspection route problem and MTSP,a group-based sequential simplex operator was designed.2-opt was introduced as the local search operator to optimize iteration results.Experimental results show that the performance of the PSO-GA is efficient,the optimal solution has high quality,and it can be applied to the equipment spot inspection route optimization.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15