检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白伦华 沈锐利[1] 张兴标 王路 BAI Lun-hua;SHEN Rui-li;ZHANG Xing-biao;WANG Lu(Department of Bridge Engineeringy Southwest Jiaotong Unviersity,Chengdu 6100311,China)
机构地区:[1]西南交通大学桥梁工程系
出 处:《吉林大学学报(工学版)》2019年第5期1500-1508,共9页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(51178396/E080505)
摘 要:为完善自锚式悬索桥面内稳定性理论,首先通过结构稳定性的概念初步判定该桥型不存在面内分岔失稳的可能性;进而在自锚式悬索桥挠度方程中通过引入位移干扰量,以幂级数干扰位移形式反证其不会出现面内弹性分岔失稳;最后以实桥为例,通过数值模型按弹性及弹塑性稳定理论计算分析了桥梁的荷载系数、破坏模式等。结果表明:在挠度理论适用范围内,自锚式悬索桥不存在面内分岔失稳;数值分析结果显示该实桥面内分岔失稳由吊索断裂引起,超出挠度理论应用范围,而极限承载力能满足安全性要求。In order to consummate the in-plane stability theory of self-anchored suspension bridge,firstly it is preliminarily determined that the bifurcation failure mode of this type bridge can not occur through the concept of structural stability. Furthermore,by introducing the displacement interference which is assumed as power series form in the deflection equation of the self-anchored suspension bridge,it is proved that the elastic bifurcation instability will not occur. Finally,a practical bridge is taken as an example,the numerical models according to the elastic stability and elastic-plastic stability theory are calculated and analyzed to obtain the load coefficient,bridge failure modes etc.. The results show that there is no in-plane bifurcation failure mode for self-anchored suspension bridge in the scope of application of deflection theory. Numerical analysis shows that the bifurcation instability in the actual bridge deck is caused by the breakage of the sling,which exceeds the application range of deflection theory,and the ultimate bearing capacity satisfies the safety requirements.
关 键 词:桥梁工程 自锚式悬索桥稳定理论 数值分析方法 主缆-吊索-主梁闭合传力路径 挠度理论 分岔失稳
分 类 号:U448.25[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.150