基于局部方差域自适应Blanking的超低频信道噪声抑制方法  被引量:1

SLF channel noise suppression method based on adaptive blanking in local variance domain

在线阅读下载全文

作  者:赵鹏[1] 蒋宇中[1] 陈斌[1] 李春腾 张杨勇 ZHAO Peng;JIANG Yu-zhong;CHEN Bin;LI Chun-teng;ZHANG Yang-yong(College of Electronic Engineering,Naval University of Engineering,Wuhan 430033,China;No.722 Research Institute of CSIC,Wuhan 430079,China)

机构地区:[1]海军工程大学电子工程学院,武汉430033 [2]中船重工集团公司第七二二研究所,武汉430079

出  处:《吉林大学学报(工学版)》2019年第5期1696-1705,共10页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(41631072,41704034)

摘  要:针对超低频信道噪声脉冲因接收机前端暂态效应而钝化导致常规Blanking非线性抑噪性能退化的问题,在分析脉冲暂态响应波形特点以及常规Blanking性能退化机制基础上,结合局部方差域变换(LVDT)能增强脉冲性的特性,提出了一种基于LVDT的自适应Blanking处理方法,给出了恒虚警率准则下信道噪声脉冲检测门限以及Blanking门限优化准则。仿真和实测结果表明:本文方法在超低频信道噪声抑制方面具有比常规非线性处理更好的性能,考虑到该方法无需信道噪声模型假设及其参数估计,是一种盲抑制方法,因而更具工程实用意义。The Super Low Frequency(SLF,3~300 Hz)Channel Noise(CN)impulses are usually smeared by the transient effects in the receivers’front-end stages,which will make the Blanking Nonlinearity(BNL)lose effectiveness.To solve this problem,based on the analysis of the waveform characteristics of transient response of impulses and the mechanism of performance reduction of the BNL,in conjunction with the consideration that the Local Variance Domain Transforming(LVDT)is capable to intensify the impulsiveness,an adaptive BNL based on LVDT is proposed.The Detection Threshold(DT)for the CN impulses is formulated based on the Constant False Alarm Rate(CFAR)principle and then the DT optimizing principle for the BNL is given.Simulations and real tests show that the proposed method outperforms other common NLs in terms of SLF CN impulse suppression.Since such method needs not to assume the CN model or estimate its parameter,thus is a blind suppression method,therefore,it is more practical.

关 键 词:通信与信息系统 信道噪声 脉冲暂态效应 局部方差 恒虚警率 

分 类 号:TN85[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象