大坝变形的奇异谱分析预测  被引量:6

Singular Spectrum Analysis for Analyzing and Forecasting the Dam Deformation

在线阅读下载全文

作  者:张东华[1] 李志娟 刘全明[1] 罗艳云[1] ZHANG Donghua;LI Zhijuan;LIU Quanming;LUO Yanyun(Water Conservancy and Civil Engineering College,Inner Mongolia Agricultural University,306 Zhaowuda Road,Hohhot 010018,China;Institute of Aerial Remote Sensing Surveying and Mapping of Inner Mongolia Autonomous Region,42 South-Xing’an Road,Hohhot 010010,China)

机构地区:[1]内蒙古农业大学水利与土木建筑工程学院,呼和浩特市010018 [2]内蒙古自治区航空遥感测绘院,呼和浩特市010010

出  处:《大地测量与地球动力学》2019年第10期1081-1085,共5页Journal of Geodesy and Geodynamics

基  金:国家自然科学基金(51569018,51509131)~~

摘  要:利用奇异谱分析法对大坝变形数据进行分析,提取趋势和周期分量,分析影响因子与各变形分量的相关性。结果表明,大坝变形主要与水位变化和时效因子有关,温度变化对大坝变形的周期成分贡献最大,其次为水位。另外在准确提取信号的基础上,利用奇异谱分析迭代法对大坝变形进行预测,并与多元回归分析方法和高斯过程模型进行对比,发现其预测精度明显高于后两者。We use singular spectrum analysis to extract the corresponding components and compute the correlation coefficients,under the influence of factors.The results show that the trend term of dam deformation mainly relates to water level and aging factor.For seasonal terms,the temperature factor contributes more than water level.Experimental results of dam deformation show that SSA can extract the trends and periodic signal effectively and is useful to forecast dam deformation.Then,recurrent forecasting method of SSA is used for the prediction of dam deformation.Compared with Gaussian process and multiple-regression analysis,the results show that SSA is an effective method with a higher predictive accuracy for analyzing and forecasting dam deformation.

关 键 词:奇异谱分析 大坝变形 变形预测 

分 类 号:P258[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象