检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐善山
机构地区:[1]安徽理工大学计算机科学与工程学院
出 处:《电脑知识与技术》2019年第8Z期222-223,共2页Computer Knowledge and Technology
摘 要:针对影评文本情感分析准确性不高的问题,本文提出一种基于影评领域词典结合机器学习的情感分析方法。首先,构建完备的影评领域相关词典,如程度副词词典、否定词词典和网络用词词典。然后,利用文本相似度的方法(TSIM)对训练数据集进行去重处理,并提出三类特征:词性、句法、依存进行选择。最后,利用NB和SVM相结合的分类方法对影评进行情感分类。实现结果表明,该方法相对于仅仅基于传统的机器学习的方法,具有更准确的分类精度。
关 键 词:情感分析 领域词典 机器学习 数据去重 特征选择
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117