检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程艳艳[1] CHENG Yan-yan(Langfang Teachers University,Hebei Langfang 065000,China)
机构地区:[1]廊坊师范学院
出 处:《计算机仿真》2019年第9期389-392,共4页Computer Simulation
基 金:廊坊市科技局项目(2014011066);廊坊师范学院项目(LFLY201405)
摘 要:针对当前方法非对齐分布冗余数据误判率高、网络剩余能量少,导致冗余数据去除准确性差、网络能量消耗高的问题,提出基于多节点样条理论的非对齐分布冗余数据自适应快速去除方法,利用主动采样的方法对非对齐分布冗余数据的特征进行提取,并采用线性频谱分析法对冗余数据的特征分类;按照多节点样条理论逼近误差小、插值过程不需要求解方程等性质,建立局部支集、对称的基函数,可以得到被逼近函数的支集以及支集测度,与多节点样条函数的拟合逼近原理相符,再利用小波函数消除数据中的噪声,从而设计出一种高效、快速的冗余数据快速去除方法,最终实现了非对齐分布冗余数据的快速去除。实验结果表明,提出方法在对非对齐分布冗余数据自适应快速去除时,冗余数据去除的误判率较低,并且冗余数据去除时的网络剩余能量较多,不仅能够准确的去除冗余数据,网络能量消耗也较低,提高了网络的生命周期。In the current method,the non-aligned distributed redundant data have high false positive rate and less residual energy of network,resulting in low accuracy to remove redundant data and high network energy consumption.Therefore,an adaptive method to fast remove the unaligned distributed redundant data based on many-knot spline theory was proposed.Firstly,the active sampling method was used to extract the features of unaligned distributed redundant data,and the linear spectrum analysis method was used to classify the features of redundant data.Because the approximation error was small in the many-knot spline theory and the interpolation process did not need to solve equations,the local-support and symmetric basis function was established,so that the support set and the support measure of the approximation function was obtained,which was consistent with the principle of fitting approximation of many-knot spline function.Moreover,the wavelet function was used to eliminate noise in data.Thus,an efficient method to quickly remove the redundant data was designed.Finally,the fast removal for unaligned distributed redundant data was achieved.Simulation results show that,when the proposed method removes the unaligned distributed redundant data adaptively and quickly,the false positive rate is low and there is more residual energy in network.Thus,the redundant data can be removed accurately.The network energy consumption is low.The life cycle of the network is improved.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28