检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张彩庆[1] 郑强 ZHANG Caiqing;ZHENG Qiang(School of Economics and Management,North China Electric Power University,Baoding 071000,China)
机构地区:[1]华北电力大学经济与管理学院
出 处:《电力系统及其自动化学报》2019年第8期86-93,共8页Proceedings of the CSU-EPSA
摘 要:为了提高短期光伏发电的预测精度,减少光伏发电不稳定性对于用户和电网的影响,提出一种结合相似日理论和K-means改进蝙蝠算法优化最小二乘法支持向量机LSSVM(least squares support vector machine)正则化参数和核参数的光伏发电功率短期预测方法。该方法通过历史数据集和预测日数据分析影响光伏发电功率的因素,构建日特征向量,筛选历史日数据作为训练集,并将预测日数据作为校验集。利用改进的蝙蝠算法全局寻优特性对LSSVM的参数进行优化,构建短期光伏发电功率预测模型。将所提模型与其他智能算法进行比较,结果表明该方法预测精度较高。To improve the prediction accuracy of short-term photovoltaic(PV)power generation and reduce the impact of the instability in PV power generation on users and power grid,a short-term forecasting method for PV power genera tion based on similarity day theory and K-means improved bat algorithm(KBA)is proposed to optimize the regulariza tion and kernel parameters of least square support vector machine(LSSVM).This method analyzes the factors affecting the PV power generation by using historical data sets and data on forecasting dates,constructs daily feature vectors,fil ters the data on historical dates as a training set,and uses the data on forecasting dates as a test set.The parameters of LSSVM are optimized by using the global optimization characteristics of the improved bat algorithm,thus a short-term forecasting model of PV power generation is constructed.From the comparison between the proposed model and other in telligent algorithms,it is shown that this method has higher prediction accuracy.
关 键 词:光伏发电 短期预测 最小二乘法支持向量机 蝙蝠算法 相似日理论
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3