检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘斌云[1] 王鑫[1] 万其微 LIU Bin-yun;WANG Xin;WAN Qi-wei(College of Architecture and Civil Engineering,Beijing University of Technology,Beijing 100214,China)
机构地区:[1]北京工业大学建筑工程学院
出 处:《合成材料老化与应用》2019年第5期54-58,共5页Synthetic Materials Aging and Application
基 金:国家自然科学基金(51378032)
摘 要:将人工蜂群算法与BP神经网络原理相结合,设计了预测精度更高的ABC-BP神经网络,基于室内加速锈蚀实验所获得相关数据,建立了预测钢筋锈蚀程度的网络模型。利用MATLAB平台进行仿真训练,提取训练完成后的网络权值,研究了综合因素条件下混凝土内钢筋锈蚀程度与多个影响因素之间的关系。结果表明,ABC-BP神经网络较BP神经网络具有更高的预测精度,裂缝宽度对钢筋混凝土锈蚀程度影响较大,因此ABC-BP神经网络可用于预测钢筋混凝土构件锈蚀程度。The ABC-BP neural network is designed by combining Artificial Bee Colony(ABC)algorithm and BP neural network.Based on relevant conformation got from accelerating corrosion experiment,network model was established.The MATLAB platform was used for simulation of training,and the network weights after the training were extracted.The relationship between the degree of steel corrosion in concrete and multiple influencing factors was studied under the condition of comprehensive factors.The results show that the ABC-BP neural network has a higher prediction accuracy than the BP neural network,and the crack width has a greater impact on the degree of corrosion of reinforced concrete,so ABC-BP neural network can be used to predict the corrosion degree of reinforced concrete components.
分 类 号:TU528[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.176.192