检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马浩天 杨友良 马翠红 王禄 MA Haotian;YANG Youliang;MA Cuihong;WANG Lu(College of Electrical Engineering,North China University of Science and Technology,Tangshan 063200,China)
机构地区:[1]华北理工大学电气工程学院
出 处:《现代电子技术》2019年第21期141-144,149,共5页Modern Electronics Technique
基 金:国家自然科学基金资助项目(61171058)~~
摘 要:针对氯碱电解槽的节能降耗,增加其生产效率,根据氯碱电解的复杂控制过程,设计一种氯碱电解多目标控制系统。首先,基于历史数据分析氯碱电解槽的主要影响因子,在此基础上建立氯碱电解电流效率和直流电耗的Elman神经网络预测模型;然后,利用BP神经网络控制器来提高控制精度和动态跟踪精度,并用量子优化方法对BP神经网络控制器进行优化;最后,利用Matlab进行仿真,并与改进型非劣分类遗传算法(NSGA-Ⅱ)作对比,结果表明文中所提的控制策略有效,可以为氯碱生产过程提供优化操作指导。The production efficiency is increased due to the energy saving and consumption reduction of chlor-alkali electrolysis cell.A multi-target control system for chlor-alkali electrolysis is designed to deal with the complicated control process of chlor-alkali electrolysis.The main influence factors of chlor-alkali electrolysis cell are analyzed based on historical data.On this basis,an Elman neural network prediction model for chlor-alkali electrolysis current efficiency and DC power consumption is established,and then BP neural network controller is used to improve control precision and dynamic tracking accuracy.The quantum optimization method is adopted to optimize the BP neural network controller.The simulation is carried out with Matlab.It is compared with the improved non-inferior classification genetic algorithm(NSGA-Ⅱ).The results show that the control strategy of the system proposed in this paper is effective and can provide optimal operation guidance for the chlor-alkali production process.
关 键 词:多目标控制系统 动态跟踪 预测模型 氯碱电解槽 控制器优化 ELMAN神经网络
分 类 号:TN911.1[电子电信—通信与信息系统] 34[电子电信—信息与通信工程] TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170