检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张华 曹林[1] ZHANG Hua;CAO Lin(Department of Telecommunication Engineering,Beijing Information Science and Technology University,Beijing 100101,China)
机构地区:[1]北京信息科技大学通信工程系
出 处:《计算机工程与应用》2019年第22期187-194,200,共9页Computer Engineering and Applications
基 金:国家自然科学基金(No.61671069)
摘 要:为解决已有素描人脸合成方法存在的细节模糊和清晰度低的问题,提出一种感知哈希算法(Perceptual Hash,pHash)与稀疏编码(Sparse Coding,SC)相结合的素描人脸合成方法。首先根据图像的信息熵对人脸照片-素描对进行自适应分块处理,利用感知哈希算法计算出大图像块的哈希指纹,并对小图像块进行稀疏编码;然后选取与测试照片块最相似的K个初始候选照片块,得到与之对应的素描块;最后引入二次稀疏编码方法,合成最终的素描块,进而合成整幅素描人脸图像。利用现有的人脸数据库验证了算法的有效性,该算法经优化后可用于素描人脸合成。In order to solve the problems of blurred details and low definition of existing face sketch synthesis methods,this paper presents a face sketch synthesis method based on Perceptual Hash(pHash)algorithm and Sparse Coding(SC).Firstly, according to the information entropy of the image, the photo-sketch pairs are adaptively divided into blocks. Next,the Hash fingerprints of the large image blocks are calculated by p Hash algorithm, and the small image blocks are sparsely coded. Then, the K initial candidate photo blocks which are most similar to the test blocks are selected and the corresponding sketch blocks are obtained. Finally, the second sparse coding method is introduced to synthesize the final sketch block, and then the whole face sketch image is got. The validity of the algorithm is verified by existing face databases,which can be used for sketch face synthesis after optimization.
关 键 词:素描人脸合成 图像信息熵 自适应分块 感知哈希算法 稀疏编码
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.100.195