Influence of salinity and moisture on the threshold shear velocity of saline sand in the Qarhan Desert, Qaidam Basin of China: A wind tunnel experiment  被引量:4

Influence of salinity and moisture on the threshold shear velocity of saline sand in the Qarhan Desert, Qaidam Basin of China: A wind tunnel experiment

在线阅读下载全文

作  者:LI Chao DONG Zhibao YIN Shuyan CHEN Guoxiang YANG Junhuai 

机构地区:[1]College of Geography and Tourism, Shaanxi Normal University

出  处:《Journal of Arid Land》2019年第5期674-684,共11页干旱区科学(英文版)

基  金:funded by the National Natural Science Foundation of China(41601002,41871008)

摘  要:Determination of the threshold shear velocity is essential for predicting sand transport,dust release and desertification.In this study,a wind tunnel experiment was conducted to evaluate the influence of salinity and moisture on the threshold shear velocity of saline sand.Saline sand samples(mean particle size of 164.50–186.08μm and the total silt,clay and salt content of 0.80%–8.25%)were collected from three saline sand dunes(one barchan dune and two linear dunes)in the Qarhan Desert,Qaidam Basin of China.Original saline sand samples were placed in two experimental trays for wet and dry processing to simulate deliquescence and desiccation,respectively.Surface moisture content ranging from 0.30% to 1.90% was generated by the steam method so that the saline sand can absorb water in a saturated water vapor environment.The motion of sand particles was determined by the observers with a solid laser.The laser sheet(0.80 cm thick),which was emitted by the solid laser,horizontally covered the sand surface and was bound to the sand.Results show that the cohesion of saline sand results from a combination of salt and water.The threshold shear velocity increases exponentially with the increase in crust thickness for the linear sand dunes.There is a positive linear correlation between the original moisture content and relative threshold shear velocity.The threshold shear velocity of dewatered sand is greater than that of wet sand with the same original moisture content.Our results will provide valuable information about the sand transport of highly saline soil in the desert.Determination of the threshold shear velocity is essential for predicting sand transport, dust release and desertification. In this study, a wind tunnel experiment was conducted to evaluate the influence of salinity and moisture on the threshold shear velocity of saline sand. Saline sand samples(mean particle size of 164.50–186.08 μm and the total silt, clay and salt content of 0.80%–8.25%) were collected from three saline sand dunes(one barchan dune and two linear dunes) in the Qarhan Desert, Qaidam Basin of China. Original saline sand samples were placed in two experimental trays for wet and dry processing to simulate deliquescence and desiccation, respectively. Surface moisture content ranging from 0.30% to 1.90% was generated by the steam method so that the saline sand can absorb water in a saturated water vapor environment. The motion of sand particles was determined by the observers with a solid laser. The laser sheet(0.80 cm thick), which was emitted by the solid laser, horizontally covered the sand surface and was bound to the sand. Results show that the cohesion of saline sand results from a combination of salt and water. The threshold shear velocity increases exponentially with the increase in crust thickness for the linear sand dunes. There is a positive linear correlation between the original moisture content and relative threshold shear velocity. The threshold shear velocity of dewatered sand is greater than that of wet sand with the same original moisture content. Our results will provide valuable information about the sand transport of highly saline soil in the desert.

关 键 词:THRESHOLD SHEAR velocity SALINE SAND barchan DUNE linear DUNE crust thickness MOISTURE content Qaidam Basin 

分 类 号:P93[天文地球—自然地理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象