检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付卫红[1] 胡展 FU Wei-hong;HU Zhan(School of Telecommunications Engineering,Xi’dian University,Xi’an 710071,China)
机构地区:[1]西安电子科技大学通信工程学院
出 处:《北京邮电大学学报》2019年第4期57-63,共7页Journal of Beijing University of Posts and Telecommunications
基 金:国家自然科学基金项目(61201134)
摘 要:针对低信噪比(SNR)和复杂电磁环境条件下跳频参数估计精度低及算法复杂度高的问题,提出了一种短时傅里叶变换(STFT)和平滑伪魏格纳分布(SPWVD)的组合时频分析方法.该算法首先利用STFT将天线接收信号变换到时频域,并对时频信号进行自适应降噪处理;通过自适应聚类算法进行频率的精估计;提取时频信息并剔除各类干扰,再通过网台分选后得到各类网台跳时粗估计;最后采用SPWVD及修正后的截断门限进行跳变时刻的精估计.仿真结果表明,该算法在混合网台和低SNR条件下,跳频参数估计精度较高,算法复杂度较低,有效解决了实际跳频通信系统存在频率转换时间条件下的参数估计问题。To solve low accuracy of parameter estimation and high complexity of algorithms in frequency hopping signal under low signal-to-noise ratio(SNR)and complex electromagnetic environment,a new algorithm combined short-time Fourier transform(STFT)with smoothed pseudo Winger-Ville distribution(SPWVD)is proposed.Firstly,the received signals are converted to time-frequency domain by using STFT,and then adaptive noise reduction is used in time-frequency domain.Secondly,the accurate frequency is estimated by adaptive clustering algorithm.Thirdly,the time-frequency information of the signals is extracted and all kinds of interference are eliminated.After the network is sorted,the rough estimation range of the hopping time can be calculated.Finally,SPWVD algorithm and a truncation threshold are used to deal with the rough estimation range,and then a precise frequency estimation is obtained.Simulations show that the parameter estimation of the algorithm has high accuracy and low complexity under the condition of hybrid networking and low SNR.The parameter estimation problem of existing frequency switching time in actual frequency hoppingcommunication system has been effectively solved.
关 键 词:混合网台 跳频 参数盲估计 短时傅里叶变换 平滑伪魏格纳分布
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.171.178