检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张畑 李晓华 邵举平 孙延安 ZHANG Tian;LI Xiaohua;SHAO Juping;SUN Yanan(School of Business,SUST,Suzhou 215009,China;Zhejiang Provincial Key Lab of Food Logistics Equipment and Technology,Hangzhou 310023,China;Anwood Logistics Systems(Suzhou)Co.,Ltd.,Suzhou 215021,China)
机构地区:[1]苏州科技大学商学院,江苏苏州215009 [2]浙江省食品物流装备技术研究重点实验室,浙江杭州310023 [3]苏州优乐赛供应链管理有限公司,江苏苏州215021
出 处:《苏州科技大学学报(自然科学版)》2019年第4期75-84,共10页Journal of Suzhou University of Science and Technology(Natural Science Edition)
基 金:国家社会科学基金资助项目(19BGL097)
摘 要:可循环包装材料库存控制是租赁企业管理中的一个重要问题。首先,对租赁系统是否有可供租赁的可循环包装材料数量状态进行了实时分析;然后,融合系统状态转移情形、客户选择行为和可循环包装材料库存数量三个因素,应用马尔可夫决策方法,建立了基于动态规划的可循环包装租赁企业供应链库存控制模型;并基于离线学习的超启发式算法思想模式设计智能算法求解控制模型;最后,以苏州某可循环包装材料租赁企业实际数据为基础,对模型和算法进行了验证。结果显示:所建模型和算法是有效的,能够对可循环包装租赁企业供应链网络中库存进行有效控制。The inventory control of reusable packaging materials is an important issue in leasing business man-agement. Firstly,we conducted a real-time analysis of the leasing system for checking if there are available quantities of reusable packaging materials for leasing. Then,combining the three factors,i.e. the system state transfer,the customer selection behavior and the quantity of reusable packing materials,we established a supply chain inventory control model based on dynamic programming by using Markov decision for reusable packaging leasing companies. We designed an intelligent algorithm to solve the control model based on the thinking model of hyper-heuristic algorithm for offline learning. Finally,with the actual data of a reusable packaging material leasing enterprise in Suzhou,we verified the model and the algorithm. The results show that the model and the algorithm are effective and can effectively control the inventory in the supply chain networks of reusable packag-ing leasing enterprises.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40