检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴青霞 刘东亮[2] 王丹[3] 张祥合[4] WU Qing-xia;LIU Dong-liang;WANG Dan;ZHANG Xiang-he(Archives of Hunan University of Science and Engineering,Yongzhou 425199,China;Editorial Departmentof Journal of Jilin University(Information Science Edition),Jilin University,Changchun 130011,China;Editorial Department of Journal of Bionic Engineering,Jilin University,Changchun 130022,China;Editorial Department of Journal of Jilin University(Engineering and Technology Edition),Jilin University,Changchun 130022,China)
机构地区:[1]湖南科技学院档案馆,湖南永州425199 [2]吉林大学《吉林大学学报(信息科学版)》编辑部,吉林长春130011 [3]吉林大学《仿生工程学报》编辑部,吉林长春130022 [4]吉林大学《吉林大学学报(工学版)》编辑部,吉林长春130022
出 处:《情报科学》2019年第11期112-115,126,共5页Information Science
基 金:湖南省档案局科技资助课题项目“云技术中数字档案资源管理体系的构建研究”(2015-H-06);中国高校科技期刊研究会青年基金项目“公开审稿机制中的版权保护和处理过程公开方式研究”(CUJS-QN-2018-033)
摘 要:【目的/意义】为了提高图书情报的实时检索能力,需要进行图书情报共引数据整合模型设计。【方法/过程】提出一种基于文献计量共引分析的图书情报数据的整合方法,构建图书情报文献计量共引数据整合的射频标签识别模型,采用RFID标签技术进行图书情报文献计量共引数据的自动采样,对采样的大数据采用语义相似度特征提取方法进行信息融合;结合文献计量共引分析方法进行图书情报数据的自适应聚类分析和整合分类,构建反映图书情报归类的语义本体模型。通过自相关特征匹配方法实现对图书情报文献计量共引数据的优化分类检索和整合。【结果/结论】测试结果表明,采用该模型进行图书情报文献计量共引数据整合的分类性能较好,数据检索的查全率和查准率较高,提高了图书情报的检索效率。【Purpose/significance】In order to improve the real-time retrieval ability of library information, it is necessary to carry out the design of library and information co-integration data integration model.【Method/process】Propose a method of integration of library information data based on literature and measurement co-citation analysis,construct a radio frequency tag recognition model for the integration of library and information bibliometric data,use RFID tag technology to automatically sample the co-citation data of library and information literature, and use semantic similarity feature extraction method for information fusion of sampled big data.The co-citation analysis method is used for adaptive clustering analysis and integrated classification of library information data, and a semantic ontology model reflecting the classification of library information is constructed. Through the autocorrelation feature matching method, the optimized classification and retrieval of the co-citation data of the library and information literature is realized.【Result/conclusion】The test results show that the classification performance of the library and literature bibliographic data integration is better, and the recall and precision of data retrieval are higher, which improves the retrieval efficiency of library information.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.81