检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晓亮 石恒 董德良 司建中 陈领 曹婷翠 Li Xiaoliang;Shi Heng;Dong Deliang;Si Jianzhong;Chen Ling;Cao Tingcui(Sinograin Chengdu Storage Research Institute Co.Ltd,610091;Sinograin Luoyang Depot Co.Ltd;College of Electronics and Information,Engineering,610065)
机构地区:[1]中储粮成都储藏研究院有限公司,610091 [2]中央储备粮洛阳直属库有限公司,471131 [3]四川大学电子信息学院,610065
出 处:《粮食储藏》2019年第5期46-51,共6页Grain Storage
基 金:国家重点研发计划(2017YFD0401404);中国储备粮管理集团有限公司2016年科技项目(小麦不完善粒自动检测技术及仪器的研发)
摘 要:针对现阶段国内外小麦不完善粒研究仍存在检测识别率不高、检测条件苛刻、检测时间过长等问题,开发了一套基于图像识别的小麦不完善粒快速检测技术,对图像采集、关键硬件、机器视觉和深度学习等做了一系列研究.研究结果表明,开发的小麦不完善粒图像检测设备对一个标准小麦样品检测时间能够控制在10 min以内,对不完善粒的平均识别率达到80%以上.相较于传统的人工检测,检测周期大大缩短,同时避免了不同质检员之间的感官误差,对于小麦快速收购、储存管理和品级鉴定具有重要意义,同时对于农业自动化检测技术的发展也具有积极意义.In identification of the unsound kernels of wheat at present,there are still some problems such as low detection recognition rate,harsh detection condition and long detection time.A set of rapid detection technology based on image recognition has been developed,and a series of experiments about Image acquisition,key hardware,machine vision and Deep learning were made.The results show that the detection time of one standard wheat sample is less than ten minutes through the testing equipment,the average recognition rate of the unsound kertnels of wheat is over 80%.The detection cycle is greatly shortened compared to the traditional manual detection.Meanwhile,the sensory error between different quality inspectors is avoided.It is of great significance for wheat rapid acquisition,storage management and grade identification.and it has positive significance for the development of agricultural automation detection technology.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229