基于单比特量化的低截获雷达信号测向方法  被引量:4

Direction Finding Method of Low Interception Radar Signal Based on Monobit Quantization

在线阅读下载全文

作  者:焦瑞涛 林晓烘 叶灵军[1] 满欣[1] JIAO Ruitao;LIN Xiaohong;YE Lingjun;MAN Xin(School of Electronic Engineering,Naval University of Engineering,Wuhan 430000)

机构地区:[1]海军工程大学电子工程学院

出  处:《舰船电子工程》2019年第11期79-83,共5页Ship Electronic Engineering

基  金:国家自然科学基金项目(编号:61601491,61572515);湖北省自然科学基金项目(编号:2016CFB349)资助

摘  要:单比特数字接收机具有实时测量雷达频率的能力,因此在现代电子战中具有广泛的应用前景,然而时域上的单比特量化将导致脉冲幅度信息的丢失,也会使频域上出现大量的谐波。这使得无法利用干涉仪、比辐法等传统方法对低截获概率雷达信号进行测向。针对这一问题,提出一种时差测向方法,将单比特量化与脉冲压缩技术相结合,计算低截获概率雷达信号到达相邻两个天线的时间差,进而获得雷达方向的测量值。该方法计算量远低于基于传统数字采样的互相关法。仿真实验表明该方法在低信噪比时测向性能略低于基于无失真采样的互相关法,而在高信噪比下高于无失真采样互相关法。Mono-bit digital receiver has the ability to measure radar frequency in real time,so it has a wide application pros pect in modern electronic warfare.However,mono-bit quantization in time domain will lead to the loss of pulse amplitude informa tion and a large number of harmonics in frequency domain.This makes it impossible to use traditional methods such as interferome ter and radiometric method to locate low probability of interception radar signals.In order to solve this problem,this paper proposes a time difference direction finding method,which combines monobit quantization with pulse compression technology to calculate the time difference between the low probability of interception radar signals arriving at two adjacent antennas,and then obtains the mea surement value of radar direction.The computational complexity of this method is much lower than that of cross-correlation method based on traditional digital sampling.The simulation results show that the direction finding performance of the proposed method is slightly lower than that of the cross correlation method based on undistorted sampling at low SNR,while the performance of the two methods is very close at high SNR.

关 键 词:单比特 脉冲压缩 短基线 时差测向 

分 类 号:TN974[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象