检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾四清[1]
出 处:《中国卫生统计》2019年第5期787-791,共5页Chinese Journal of Health Statistics
摘 要:时间序列数据趋势分析的经典方法包括移动平均模型、回归模型、差分自回归移动平均模型等,常用的回归模型包括线性模型、指数模型、对数模型等。传统回归分析主要反映全局数据总体趋势,可能无法揭示局部数据的特定趋势。因此,分段回归模型应运而生[1],但如何分段又成为新的问题。Kim等提出的Joinpoint Regression(JPR)模型提供了解决方法[2]。近年来,JPR模型在癌症和慢性病流行病学趋势研究领域得到广泛应用.
关 键 词:对数模型 局部数据 差分自回归移动平均模型 回归模型 线性模型 指数模型 全局数据 回归分析
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222