检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王沛沛[1] 李金凯[1] 李彩虹[1] 昌志刚[1] 顾宵寰 曹远东[1] WANG Peipei;LI Jinkai;LI Caihong;CHANG Zhigang;GU Xiaohuan;CAO Yuandong(Center of Radiation Oncology,Jiangsu Province Hospital,Nanjing 210029,China)
机构地区:[1]江苏省人民医院放射治疗中心
出 处:《中国医学物理学杂志》2019年第11期1346-1349,共4页Chinese Journal of Medical Physics
基 金:国家自然科学基金(81672983)
摘 要:目的:评估基于人工智能技术的自动勾画软件勾画胸部危及器官轮廓的几何学精度,为临床应用提供依据。方法:选择30例胸部肿瘤患者的CT图像,分别使用基于人工智能技术的自动勾画软件勾画和医师手动勾画胸部危及器官。采用Hausdorff距离、形状相似性指数及Jaccard系数这3个指标评价自动勾画与手动勾画危及器官的几何学一致性。结果:在肺、心脏和脊髓的Hausdorff距离中,最大为右肺的(22.31±4.50)mm,最小为脊髓的(3.17±0.80)mm。危及器官的形状相似性指数值均≥0.91。Jaccard系数中左肺和右肺的均值≥0.95,脊髓的为0.84±0.02,心脏的略低为0.83±0.04。结论:基于人工智能技术的危及器官自动勾画软件对于胸部危及器官勾画能够达到较高的准确性和精度,可以满足临床工作。Objective To evaluate the geometric accuracy of automatic segmentation software based on artificial intelligence technology for segmenting the organs-at-risk(OAR)in patients with thoracic tumors,so as to provide a basis for its clinical application.Methods Atotal of 30 patients with thoracic tumors were enrolled in the study,and the thoracic OAR was automatically delineated by segmentation software and manually segmented by physicians.Three evaluation indexes,namely Hausdorff distance,Dice similarity coefficient and Jaccard coefficient,were used to evaluate the geometric consistency between automatic segmentation and manual segmentation.Results Among the Hausdorff distances of lung-L,lung-R,heart and spinal cord,the maximum Hausdorff distance was(22.31±4.50)mm in lung-R,and the minimum was(3.17±0.80)mm in spinal cord.The Dice similarity coefficient of all OAR(lung-L,lung-R,heart,spinal cord)was not less than 0.91.The mean value of Jaccard coefficient in lung-L and lung-R were greater than or equal to 0.95,while that in spinal cord and heart was 0.84±0.02 and 0.83±0.04,respectively.Conclusion The automatic segmentation software based on artificial intelligence technology can achieve a high accuracy and precision in thoracic OAR segmentation,which can meet the needs of clinical practices.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222