小样本深度学习方法实现LED TV屏缺陷检测  被引量:1

Defect Inspection for LED TV Screen Using Deep Learning Method on Small Sample Datasets

在线阅读下载全文

作  者:周永福[1] 曾志[2] 罗中良 Zhou Yongfu;Zeng Zhi;Luo Zhongliang(Electronic and Information Engineering Institute,Heyuan Ploytecnic,Heyuan 517000,China;School of Information Science&Technology,Huizhou University,Huizhou 516007,China;School of Electronic Information and Electrical Engineering,Huizhou University,Huizhou 516007,China)

机构地区:[1]河源职业技术学院电子与信息工程学院,广东河源517000 [2]惠州学院信息科学技术学院,广东惠州516007 [3]惠州学院电子信息与电气工程学院,广东惠州516007

出  处:《计算机测量与控制》2019年第11期11-15,共5页Computer Measurement &Control

基  金:惠州市科技计划项目(2016X0423038,2017C0401017);[2017]74号-7河源市大数据应用工程中心建设项目

摘  要:为实现当前工业4.0时代电子类企业智能制造的全过程,引入机器视觉完成产品的缺陷检测,用于解决缺陷问题多样性导致算法能力不足的问题;首先对已标注小样本数据集通过深度学习得到初始特征模型,接着针对该特征模型施以迁移学习方法用以实现LED TV的检测,并将已检测样本进一步用于增量学习完成模型参数的修正,最后采用全连接神经网络FCNet(Fully Connected Neural Network)完成分类,探讨了一种运用机器视觉实现LED TV的光学屏检技术;并给出了检测样品作为补充的样本数据集增量学习模型;实践表明,所提出的方法能进一步提升工业机器人智能制造阶段自动化检测的准确率,最终实现工业生产的柔性和智能化水平,并为机器视觉的应用提供示范。In order to better implement the whole process of intelligent manufacturing for electronic enterprises in industry 4.0 era,the machine vision is introduced to address the diversity problem of deficiency on defects in the ability of algorithms.Firstly,through depth learning for the small labeled sample datasets a feature model is obtained.After that,we train the feature model for implement the LED screen inspection by transfer learning.Meanwhile,using incremental learning the parameters of model are corrected step by step.Finally,the FCNet(fully connected neural network)is used to implement the classification.The proposed method on machine vision to complete LED TV screen detection,and the incremental learning model of the sample datasets is given as a continuous supplement.Many experiments show that the deep learning could further improve the accuracy on automatic inspection,also enhance the flexibility and intelligence level on industrial production,and expand the application of machine vision to provide demonstration.

关 键 词:机器视觉 迁移学习 增量学习 FCNet LED TV 缺陷检测 

分 类 号:TP242.62[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象