最小二乘多项式拟合算法在管理高消耗医用低值耗材中的应用  被引量:11

The Application of Least Square Polynomial Fitting Algorithms in the Management of High Consumption of Low-Value Medical Consumables

在线阅读下载全文

作  者:李萍[1] 王茂才 林琳[1] 王先爱[1] LI Ping;WANG Mao-cai;LIN Lin(The First Affiliated Hospital of Anhui Medical University,Hefei,230022,China)

机构地区:[1]安徽医科大学第一附属医院,合肥230022 [2]黑龙江省卫生健康委员会,哈尔滨164800

出  处:《中国卫生经济》2019年第11期72-75,共4页Chinese Health Economics

摘  要:目的:对目前医院医用低值耗材占比高,存在不合理使用和浪费现象,寻找精确化管理技术与方法。方法:以患者每床日某耗材平均用量为耗材消耗建模研究对象,充分考虑年度医院平均住院日变化,提出使用最小二乘多项式拟合算法实现对医院医用耗材消耗进行数学建模分析。结果:通过对样本公立医院两种典型耗材2014-2018年的平均用量建模计算,验证了提出的医用耗材最小二乘多项式拟合算法的精确性和有效性。结论:最小二乘多项式拟合算法,既可以用于预测下一年度的各科室平均用量,用于医院各科室耗材管理、预算编制和绩效考核,也可以应用于医疗管理信息化大数据分析使用,控制不合理医疗费用增长。Objective:The precise management techniques and methods would be found out,for the low-value medical consumables(LVMC)in hospitals,such as high proportion application,the unreasonable use and waste problem.Methods:Taking advantage of the average consumption of per bed-day of the LVMC as the research object of consumables consumption modeling,taking into account the change of average hospital stay,a least squares polynomial fitting algorithm(LSPFA)was proposed to realize the mathematical modeling and analysis of LVMC consumption.Results:The accuracy and validity of the LSPFA for LVMCs were validated by modeling and calculating the average consumption of two typical consumables in a pilot public hospital from 2014 to 2018.Conclusion:The LSPFA not only could be widely used to predict the average consumption of departments in the next year,but also could be applied to consumable management,financial budget and performance appraisal of hospitals departments.Further,it could also be used to analyze and application of large data in the field of the informative medical management to control the growth of unreasonable medical expenses.

关 键 词:最小二乘多项式拟合算法 医用低值耗材 耗材管理 

分 类 号:R1-9[医药卫生—公共卫生与预防医学] F224.9[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象