黄河三角洲地区GF-3雷达数据与Sentinel-2多光谱数据湿地协同分类研究  被引量:15

Wetland Classification Through Integration of GF-3 SAR and Sentinel-2B Multispectral Data over the Yellow River Delta

在线阅读下载全文

作  者:李鹏[1,2] 黎达辉 李振洪 王厚杰 LI Peng;LI Dahui;LI Zhen hong;WANG Houjie(Key Laboratory of Submarine Geosciences and Prospecting Techniques,MOE,Ocean University of China,Qingdao 266100,China;Laboratory of Marine Geology,Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao 266061.China;School of Geographic Sciences,East China Normal University,Shanghai 200241,China;School of Engineering,Newcastle University,Newcastle Upon Tyne NE17RU,UK)

机构地区:[1]中国海洋大学海底科学与探测技术教育部重点实验室,山东青岛266100 [2]青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室,山东青岛266061 [3]华东师范大学地理科学学院,上海200241 [4]英国纽卡斯尔大学工程学院,英国纽卡斯尔NE17RU

出  处:《武汉大学学报(信息科学版)》2019年第11期1641-1649,共9页Geomatics and Information Science of Wuhan University

基  金:项目资助:国家自然科学基金(41806108);国家重点研发计划(2017YFE0133500,2016YFA0600903);山东省自然科学基金(ZR2016DB30);中国博士后科学基金(2016M592248);青岛市自主创新计划应用基础研究项目(16-5-1-25-jch);中央高校基本科研业务费专项资金(201713039);青岛市博士后人员应用研究项目~~

摘  要:黄河三角洲湿地的动态变化监测对湿地资源合理利用、开发保护具有重要意义。采用C波段全极化高分三号(GF-3)合成孔径雷达数据与欧洲空间局哨兵二号(Sentinel-2B)多光谱数据,分析了黄河三角洲湿地7类地物的光谱、指数、极化散射以及纹理等特征信息,分别基于最大似然法(maximum likelihood,ML)、决策树(decision tree, DT)、支持向量机(support vector machine, SVM)方法实现了有监督分类,评估了两者协同与单独应用于湿地地物分类与识别的能力,结果表明,两者协同分类时,其总体精度分别可达90.4%、95.4%、95.7%,均明显高于两者单独分类的结果,证明了GF-3雷达数据与多光谱数据在湿地协同分类方面的可靠性和应用潜力。It is of great significance to monitor dynamic change of wetland over the Yellow River Delta for rational utilization, development and protection of wetland resources. Both Gaofen-3(GF-3) SAR data and Sentinel-2 B multispectral data were used to analyze the spectral, index, polarization scatter and texture feature information of seven types of ground objects over the Yellow River Delta wetland, and then supervised classification was implemented with maximum likelihood(ML), decision tree(DT) and support vector machine(SVM) classifier. The performances of both the joint and the individual classifications with GF-3 and Sentinel-2 B data were also evaluated. The results of three algorithms show that the overall accuracy of the joint classification can reach 90.4%, 95.4%, 95.7%, significantly higher than that of the individual classifications, showing the promising potential of GF-3 SAR and Sentinel-2 B multi-spectral images in joint wetland classification.

关 键 词:黄河三角洲 GF-3 Sentinel-2B 湿地分类 监督分类 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象