多源卫星降水产品在不同省份的精度评估与比较分析  被引量:16

Evaluation and Comparison of Multi-Source Satellite Precipitation Products in Different Climate Regions over China's Mainland

在线阅读下载全文

作  者:卫林勇 江善虎[1,2] 任立良 张林齐[1] 周梦瑶 WEI Lin-yong;JIANG Shan-hu;REN Li-liang;ZHANG Lin-qi;ZHOU Meng-yao(College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China;State Key Laboratory of Hydrology-water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China)

机构地区:[1]河海大学水文水资源学院,南京210098 [2]河海大学水文水资源与水利工程科学国家重点实验室,南京210098

出  处:《中国农村水利水电》2019年第11期38-44,共7页China Rural Water and Hydropower

基  金:“十三五”国家重点研发计划项目(2016YFA0601504);中央高校基本科研业务费项目(2019B10414);江苏省研究生科研与实践创新计划项目(2019B72614/SJKY19_0477)

摘  要:基于地面格网降水产品CGDPA,利用4个统计指标、分类度量等方法评估和比较CHIRPS、CMORPH-BLD、PERSIANN-CDR、TRMM 3B42V7卫星数据源在不同省份不同尺度的降水监测能力。结果表明:①江西月降水量最大值在6月份,其余在7月份达年内最大值;TRMM 3B42V7在不同省份捕捉月降水的性能最好。②从降水量及相关系数分析,TRMM 3B42V7在5省均较好的估计四季降水。③卫星降水产品与CGDPA的相关性在低降水地区较弱,在高降水地区较强;根据相关系数空间分布和箱线图,PERSIANN-CDR相对适用于新疆、吉林,TRMM 3B42V7较适用于陕西、江西以及云南。Based on the China Gauge-based Precipitation Daily Analysis dataset(CGDPA) of ground grid precipitation product, four statistical indicators and classification measures are used to evaluate and compare the rainfall monitoring capabilities of Climate Hazards group Infrared Precipitation with Station Data(CHIRPS), Climate Prediction Center Morphing technique satellite-gauge merged(CMORPH-BLD), Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR), Tropical Rainfall Measuring Mission(TRMM) 3 B42 V7 satellite data sources at different scales in different provinces. The results show that: ① The maximum monthly precipitation in Jiangxi is in June, and the rest reaches the maximum in July. TRMM 3 B42 V7 has the best performance in capturing monthly precipitation in different provinces. ② Based on an analysis of precipitation and correlation coefficients, TRMM 3 B42 V7 can better estimate the four seasons precipitation in 5 provinces. ③ The correlation between satellite precipitation products and CGDPA is weak in low precipitation estimation area, but strong in high precipitation area. According to the spatial distribution of the correlation coefficient and box chart, PERSIANN-CDR is suitable for Xinjiang and Jilin, while TRMM 3 B42 V7 is more suitable for Shanxi, Jiangxi and Yunnan.

关 键 词:CGDPA 卫星数据源 统计指标 分类度量 

分 类 号:TV125[水利工程—水文学及水资源] P467[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象