检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾澎涛[1] 吕巧林 Jia Pengtao;Lyu Qiaolin(College of Computer Science&Technology,Xi’an University of Science&Technology,Xi’an 710054,China)
机构地区:[1]西安科技大学计算机科学与技术学院
出 处:《计算机应用研究》2019年第12期3769-3772,共4页Application Research of Computers
基 金:西安市科技计划资助项目(2017079CG/RC042(XAKD001))
摘 要:针对瓦斯灾害危险性预测中预测性能低的问题,对一种基于矿井内瓦斯浓度与环境因素相关性分析的瓦斯灾害选择集成预测方法进行了研究。首先,分析实验数据中样本属性与瓦斯浓度的相关性,并根据相关性分析结果进行属性约简得到新的数据集;其次,训练基学习器并应用优化集成前序选择方法建立选择集成回归学习模型;最后,将模型应用于瓦斯灾害预测。实验结果表明,基于相关性分析的选择集成回归学习模型对瓦斯灾害危险性的识别率比未进行相关性分析的四个基学习器平均提高了24%,比未进行相关性分析的选择集成回归学习模型提高了7. 6%。In view of the low prediction performance of gas disaster risk prediction,this paper studied the prediction method of gas disaster selective ensemble regression learning based on correlation analysis of mine gas concentration and environmental factors. Firstly,this paper analyzed the correlation between gas concentration and sample attributes,and reduced the attribute to obtain a new data set according to the results of the correlation analysis. Secondly,it trained base learners,and used the optimization ensemble forward sequential selection method to establish the selective ensemble regression learning model. Finally,it used the model for gas disaster prediction. The experimental results show that the recognition rate of the proposed model for gas disaster risk compared with the four learner without correlation analysis improves 24% on average,and compared with the selective ensemble regression learning model without correlation analysis improves 7. 6%.
关 键 词:瓦斯灾害 相关性分析 选择集成回归学习 集成前序选择 识别率
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249