改进的教与学优化算法求解多工艺路线的炼钢连铸生产调度问题  

An Improved Teaching and Learning Based Optimization Algorithm for Production Scheduling of Steelmaking and Continuous Casting with Multiple Process Routes

在线阅读下载全文

作  者:吴玲 唐秋华[1,2] 李玲 张利平[1,2] WU Ling;TANG Qiu-hua;LI Ling;ZHANG Li-ping(Key Laboratory of Metallurgical Equipment and Control Technology,Wuhan University of Science and Technology,Hubei Wuhan 430081,China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Hubei Wuhan 430081,China)

机构地区:[1]武汉科技大学冶金装备及其控制教育部重点实验室,湖北武汉430081 [2]武汉科技大学机械传动与制造工程湖北省重点实室,湖北武汉430081

出  处:《机械设计与制造》2019年第12期23-27,共5页Machinery Design & Manufacture

基  金:国家自然科学基金资助项目(51275366,51305311)

摘  要:针对多工艺路线、多并行机和有限缓冲单元的炼钢连铸生产调度问题,用连续时间表示法建立混合整数线性规划优化模型,并提出增加自学习阶段的改进教与学优化算法求解该问题。在算法中,采用了随机键的编码和两阶段解码方法,有效保证了解空间的多样性;同时,对具有有限缓冲约束的生产调度问题,针对有限缓冲不满足的情况,提出了基于最小移动距离的有限缓冲消解机制,并将其用于解码过程中。最后,根据实际生产数据,验证了该算法对单一工艺路线和复杂工艺路线生产的适用性,并产生多组不同规模的算例验证了算法的适用性和优越性。For SCC production scheduling problem with the multi-parallel machine and finite buffer unit,a hybrid integer linear programming optimization model is established based on continuous time representation method.Then an improved teaching and learning based optimization algorithm(ITLBO)with self-learning phase is designed to solve this problem.In ITLBO,the coding method of random keys and two-phase decoding method is used to guarantee the diversity of the search space.For limited buffer constraint,a conflict digestion mechanism is proposed based on minimum moving distance mechanism and used in decoding where the limited buffer constraint is not satisfied.Finally,considering the multi-routes SCC scheduling problem with unparalleled machines,a number of different sizes of cases are designed according to the actual production data,the effectiveness and superiority of ITLBO are verified completely through the comparison of the mean and optimal solution with other two algorithms.

关 键 词:多工艺路线 有限缓冲 多并行机 改进教与学优化算法 

分 类 号:TH16[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象