南海深水高产气井测试分析及产能评价技术  被引量:8

Test Analysis Methods and Productivity Evaluation Technology in Deep-water High Production Gas Reservoir,South China Sea

在线阅读下载全文

作  者:李浩 周伟 汪来潮 田文荣 牛雪 LI Hao;ZHOU Wei;WANG Lai-chao;TIAN Wen-rong;NIU Xue(CNOOC China Ltd.,Zhanjiang 524057,China)

机构地区:[1]中海石油(中国)有限公司湛江分公司

出  处:《科学技术与工程》2019年第33期139-145,共7页Science Technology and Engineering

摘  要:莺歌海盆地深水气井LS17-X1井的测试成功,创造了中国海油自营气井单层测试日产量最高纪录,但是其稳定产能测试资料出现二项式产能方程和指数式产能差异大的情况,难以确定其无阻流量。结合测试工艺流程,分析各流动段压力波动原因,采用各流动段相对稳定点的压力数据回归二项式产能方程确定该气井的合理产能;同时,针对未测试砂体的产能,通过岩性、物性、电性定性类比,结合模块式地层动态测试器(MDT)流度等多参数定量预测综合分析确定其产能,形成了深水区域产能定性和定量预测综合分析技术,产能的合理预测,减少类似油气藏基础资料录取,节约大量测试成本。The success of potential test of deep gas well of LS17-X1 in Yinggehai basin created the highest records of single test day in marine self wells in China.But its steady productivity test data appeared the condition that productivity difference was large using binomia deliverability equation and index production equation,it was difficult to determine its absolute open flow.Combining the test process,the reasons for pressure fluctuations of the various flow segments was analyzed,binomia deliverability equation using pressure data for relatively stable flow point of each segment can determine reasonable productivity.Meanwhile,for the region of untested sand,the productivity was determined by using comprehensive analysis by lithology,physical properties,electrical properties of qualitative comparison,combined with multi-parameter quantitative calculation such as modular formation dynamics tester flow degree.Then formed comprehensive analysis techniques on productivity qualitative and quantitative forecasting in deep water.The technique can predict reasonable productivity,reduce similar reservoir basic datum matriculated,and save the costing of testing.

关 键 词:深水气藏 地层钻杆测试 模块式地层动态测试器 测试分析 产能评价 

分 类 号:TE155[石油与天然气工程—油气勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象