Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent  

Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent

在线阅读下载全文

作  者:Xiaoming An Shuangjie Peng Chaodong Xie 

机构地区:[1]School of Mathematics and Statistics,Hubei Key Laboratory of Mathematical Sciences,Central China Normal University,Wuhan 430079,China [2]School of Economics Management,Guizhou University for Ethinic Minorities,Guiyang 550025,China

出  处:《Science China Mathematics》2019年第12期2497-2504,共8页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.11831009 and 11571130)

摘  要:In this paper, we prove that the supremum sup{ ∫B∫B|u(y)|p(|y|)|u(x)|p(|x|)/|x-y|μdxdy : u ∈ H0,rad1(B), ||?||uL2(B)= 1}is attained, where B denotes the unit ball in RN(N ≥3), μ ∈(0, N), p(r) = 2μ*+ rt, t ∈(0, min{N/2-μ/4, N-2}) and 2μ*=(2N-μ)/(N-2) is the critical exponent for the Hardy-Littlewood-Sobolev inequality.In this paper,we prove that the supremum sup{∫B∫B|u(y)|^p(|y|)|u(x)|^p(|x|)/|x-y|^u dxdy:u∈H0^1,rad(B),‖▽u‖L^2(B)=1}is attained,where B denotes the unit ball in R^N(N≥3),μ∈(0,N),p(r)=2^xμ+r^t,t∈(0,min{N/2-μ/4,N-2})and 2μ^*=(2N-μ)/(N-2)is the critical exponent for the Hardy-Littlewood-Sobolev inequality.

关 键 词:Hardy-Littlewood-Sobolev INEQUALITY achievability of a SUPREMUM SUPERCRITICAL EXPONENT 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象