检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaoming An Shuangjie Peng Chaodong Xie
机构地区:[1]School of Mathematics and Statistics,Hubei Key Laboratory of Mathematical Sciences,Central China Normal University,Wuhan 430079,China [2]School of Economics Management,Guizhou University for Ethinic Minorities,Guiyang 550025,China
出 处:《Science China Mathematics》2019年第12期2497-2504,共8页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.11831009 and 11571130)
摘 要:In this paper, we prove that the supremum sup{ ∫B∫B|u(y)|p(|y|)|u(x)|p(|x|)/|x-y|μdxdy : u ∈ H0,rad1(B), ||?||uL2(B)= 1}is attained, where B denotes the unit ball in RN(N ≥3), μ ∈(0, N), p(r) = 2μ*+ rt, t ∈(0, min{N/2-μ/4, N-2}) and 2μ*=(2N-μ)/(N-2) is the critical exponent for the Hardy-Littlewood-Sobolev inequality.In this paper,we prove that the supremum sup{∫B∫B|u(y)|^p(|y|)|u(x)|^p(|x|)/|x-y|^u dxdy:u∈H0^1,rad(B),‖▽u‖L^2(B)=1}is attained,where B denotes the unit ball in R^N(N≥3),μ∈(0,N),p(r)=2^xμ+r^t,t∈(0,min{N/2-μ/4,N-2})and 2μ^*=(2N-μ)/(N-2)is the critical exponent for the Hardy-Littlewood-Sobolev inequality.
关 键 词:Hardy-Littlewood-Sobolev INEQUALITY achievability of a SUPREMUM SUPERCRITICAL EXPONENT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7