检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Momodou L.Sanyang Ata Kabán
机构地区:[1]School of Computer Science,University of Birmingham,Edgbaston,Birmingham B152TT,U.K. [2]School of Information Technology and Communication,University of The Gambia,Serekunda,The Gambia
出 处:《Journal of Computer Science & Technology》2019年第6期1241-1257,共17页计算机科学技术学报(英文版)
基 金:partly funded by a Ph.D.scholarship from the Islamic Development Bank;funded by the Engineering and Physical Sciences Research Council of UK under Fellowship Grant EP/P004245/1.
摘 要:We present new variants of Estimation of Distribution Algorithms (EDA) for large-scale continuous optimisation that extend and enhance a recently proposed random projection (RP) ensemble based approach. The main novelty here is to depart from the theory of RPs that require (sub-)Gaussian random matrices for norm-preservation, and instead for the purposes of high-dimensional search we propose to employ random matrices with independent and identically distributed entries drawn from a t-distribution. We analytically show that the implicitly resulting high-dimensional covariance of the search distribution is enlarged as a result. Moreover, the extent of this enlargement is controlled by a single parameter, the degree of freedom. For this reason, in the context of optimisation, such heavy tailed random matrices turn out to be preferable over the previously employed (sub-)Gaussians. Based on this observation, we then propose novel covariance adaptation schemes that are able to adapt the degree of freedom parameter during the search, and give rise to a flexible approach to balance exploration versus exploitation. We perform a thorough experimental study on high-dimensional benchmark functions, and provide statistical analyses that demonstrate the state-of-the-art performance of our approach when compared with existing alternatives in problems with 1000 search variables.
关 键 词:covariance adaptation estimation of distribution algorithm random projection ensemble T-DISTRIBUTION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38