检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭玉纯 曹小鹏 胡元娇 GUO Yu-chun;CAO Xiao-peng;HU Yuan-jiao(School of Computer,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
机构地区:[1]西安邮电大学计算机学院
出 处:《计算机技术与发展》2019年第12期55-60,共6页Computer Technology and Development
基 金:国家自然科学基金(61136002);陕西省科技计划工业公关项目(2014k06-36);陕西省教育科技计划项目(2013JK1128);西安市科技计划项目(CX12188(7))
摘 要:灰狼优化算法是模拟灰狼捕食行为的新型智能优化算法。原始灰狼算法由于种群迭代更新始终靠近最优解,所以存在易陷入局部最优解以及早熟收敛过快的现象。为了解决该问题,提出了一种基于禁忌搜索的灰狼优化算法,在原始灰狼优化算法中引入禁忌表的策略。禁忌表可以记录若干次历史搜索记录,下轮算法迭代可通过检索禁忌表来避免迂回搜索。当算法多次迭代且无法进一步获得更优解时,对当前最优解再进行一轮禁忌搜索,使得算法在一定次数内避免再次回到历史搜索中,进而跳出局部最优。通过对8个Benchmark基准函数的寻优测试表明,改进后的算法与原始灰狼优化算法和粒子群算法相比,其全局搜索能力获得显著提高,收敛速度加快,收敛精度更高,寻优能力更佳。Grey-wolf-optimization(GWO)is a new intelligent optimization algorithm which simulates predation behavior of grew wolf.The original grey wolf algorithm is always close to the optimal solution,so it is easy to fall into the local optimal solution with too fast premature convergence.Aiming at these shortcomings,we propose an improved GWO based on the tabu search where the tabu list strategy is introduced into the basic GWO.Tabu list can record several times of historical search,and the next iteration can avoid circuitous search by searching tabu list.When the algorithm iterates for many times and cannot further obtain a better solution,another round of tabu search is conducted for the current optimal solution,so that the algorithm can avoid returning to the historical search again within a certain number of times,and then jump out of the local optimal.The optimization test of 8 Benchmark functions shows that the improved GWO has stronger global search capability,faster convergence,higher precision,and better search capability compared with basic GWO algorithm and PSO algorithm.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3