机构地区:[1]Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China [2]Food Crops Institute,Hubei Academy of Agricultural Sciences,Wuhan 430064,Hubei,China [3]Department of Crop and Soil Sciences,University of Georgia,Griffin,GA 30223,USA [4]US Department of Agriculture-Agricultural Research Service,Hard Winter Wheat Genetics Research Unit,Manhattan,KS 66506,USA [5]Agriculture and Agri-Food Canada,Ottawa Research and Development Centre,Ottawa,Ontario K1A 0C6,Canada [6]CIMMYT-China Office,c/o CAAS,Beijing 100081,China
出 处:《The Crop Journal》2019年第6期730-738,共9页作物学报(英文版)
基 金:financially supported by the National Key Research and Development Program of China (2017YFD0101000);International Scientific and Technological Cooperation Project (2016YFE0108600);Agricultural Science and Technology Innovation Program of CAAS
摘 要:The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing high levels of FHB resistance were grown before the 1950 s. Later, pyramiding multiple sources of FHB resistance from introduced germplasm such as Mentana and Funo and locally adapted cultivars played a key role in combining satisfactory FHB resistance and high yield potential in commercial cultivars.Sumai 3, a Chinese spring wheat cultivar, became a major source of FHB resistance in the USA and Canada, and contributed to the release of more than 20 modern cultivars used for wheat production, including the leading hard spring wheat cultivars Alsen, Glenn, Barlow and SY Ingmar from North Dakota, Faller and Prosper from Minnesota, and AAC Brandon from Canada. Brazilian wheat cultivar Frontana, T. dicoccoides and other local germplasm provided additional sources of resistance. The FHB resistant cultivars mostly relied on stepwise accumulation of favorable alleles of both genes for FHB resistance and high yield,with marker-assisted selection being a valuable complement to phenotypic selection. With the Chinese Spring reference genome decoded and resistance gene Fhb1 now cloned, new genomic tools such as genomic selection and gene editing will be available to breeders, thus opening new possibilities for development of FHB resistant cultivars.The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing high levels of FHB resistance were grown before the 1950 s. Later, pyramiding multiple sources of FHB resistance from introduced germplasm such as Mentana and Funo and locally adapted cultivars played a key role in combining satisfactory FHB resistance and high yield potential in commercial cultivars.Sumai 3, a Chinese spring wheat cultivar, became a major source of FHB resistance in the USA and Canada, and contributed to the release of more than 20 modern cultivars used for wheat production, including the leading hard spring wheat cultivars Alsen, Glenn, Barlow and SY Ingmar from North Dakota, Faller and Prosper from Minnesota, and AAC Brandon from Canada. Brazilian wheat cultivar Frontana, T. dicoccoides and other local germplasm provided additional sources of resistance. The FHB resistant cultivars mostly relied on stepwise accumulation of favorable alleles of both genes for FHB resistance and high yield,with marker-assisted selection being a valuable complement to phenotypic selection. With the Chinese Spring reference genome decoded and resistance gene Fhb1 now cloned, new genomic tools such as genomic selection and gene editing will be available to breeders, thus opening new possibilities for development of FHB resistant cultivars.
关 键 词:Fhb1 FUSARIUM head blight RESISTANCE FUSARIUM GRAMINEARUM Triticum AESTIVUM WHEAT BREEDING
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...