Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var.dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5  被引量:12

Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var.dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5

在线阅读下载全文

作  者:Deyun Zhang Keyu Zhu Lingli Dong Yong Liang Genqiao Li Tilin Fang Guanghao Guo Qiuhong Wu Jingzhong Xie Yongxing Chen Ping Lu Miaomiao Li Huaizhi Zhang Zhenzhong Wang Yan Zhang Qixin Sun Zhiyong Liu 

机构地区:[1]College of Agronomy and Biotechnology,China Agricultural University,Beijing 100193,China [2]State Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,the Innovative Academy of Seed Design,Chinese Academy of Sciences,Beijing 100101,China [3]University of Chinese Academy of Sciences,Beijing 100049,China [4]Department of Plant Soil Sciences,Oklahoma State University,Stillwater,OK 74078,USA [5]China Rural Technology Development Center,Beijing 100045,China

出  处:《The Crop Journal》2019年第6期761-770,共10页作物学报(英文版)

基  金:supported by the National Key Research and Development Program of China (2017YFD0101004);the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-ZDTP-024)

摘  要:Stripe rust and powdery mildew are both devastating diseases for durum and common wheat.Pyramiding of genes conferring resistance to one or more diseases in a single cultivar is an important breeding approach to provide broader spectra of resistances in wheat improvement. A new powdery mildew resistance gene originating from wild emmer(Triticum turgidum var.dicoccoides) backcrossed into common wheat(T. aestivum) line WE35 was identified. It conferred an intermediate level of resistance to Blumeria graminis f. sp. tritici isolate E09 at the seedling stage and a high level of resistance at the adult plant stage. Genetic analysis showed that the powdery mildew resistance in WE35 was controlled by a dominant gene designated Pm64. Bulked segregant analysis(BSA) and molecular mapping indicated that Pm64 was located in chromosome bin 2 BL4-0.50–0.89. Polymorphic markers were developed from the corresponding genomic regions of Chinese Spring wheat and wild emmer accession Zavitan to delimit Pm64 to a 0.55 cM genetic interval between markers WGGBH1364 and WGGBH612, corresponding to a 15 Mb genomic region on Chinese Spring and Zavitan 2 BL, respectively. The genetic linkage map of Pm64 is critical for fine mapping and cloning. Pm64 was completely linked in repulsion with stripe rust resistance gene Yr5. Analysis of a larger segregating population might identify a recombinant line with both genes as a valuable resource in breeding for resistance to powdery mildew and stripe rust.Stripe rust and powdery mildew are both devastating diseases for durum and common wheat.Pyramiding of genes conferring resistance to one or more diseases in a single cultivar is an important breeding approach to provide broader spectra of resistances in wheat improvement. A new powdery mildew resistance gene originating from wild emmer(Triticum turgidum var.dicoccoides) backcrossed into common wheat(T. aestivum) line WE35 was identified. It conferred an intermediate level of resistance to Blumeria graminis f. sp. tritici isolate E09 at the seedling stage and a high level of resistance at the adult plant stage. Genetic analysis showed that the powdery mildew resistance in WE35 was controlled by a dominant gene designated Pm64. Bulked segregant analysis(BSA) and molecular mapping indicated that Pm64 was located in chromosome bin 2 BL4-0.50–0.89. Polymorphic markers were developed from the corresponding genomic regions of Chinese Spring wheat and wild emmer accession Zavitan to delimit Pm64 to a 0.55 cM genetic interval between markers WGGBH1364 and WGGBH612, corresponding to a 15 Mb genomic region on Chinese Spring and Zavitan 2 BL, respectively. The genetic linkage map of Pm64 is critical for fine mapping and cloning. Pm64 was completely linked in repulsion with stripe rust resistance gene Yr5. Analysis of a larger segregating population might identify a recombinant line with both genes as a valuable resource in breeding for resistance to powdery mildew and stripe rust.

关 键 词:Blumeria graminis Genetic linkage map Yellow RUST TRITICUM AESTIVUM TRITICUM dicoccoides 

分 类 号:S51[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象